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Reinforcement Learning Toolbox Product Description
Design and train policies using reinforcement learning

Reinforcement Learning Toolbox™ provides an app, functions, and a Simulink® block for training
policies using reinforcement learning algorithms, including DQN, PPO, SAC, and DDPG. You can use
these policies to implement controllers and decision-making algorithms for complex applications such
as resource allocation, robotics, and autonomous systems.

The toolbox lets you represent policies and value functions using deep neural networks or look-up
tables and train them through interactions with environments modeled in MATLAB® or Simulink. You
can evaluate the single- or multi-agent reinforcement learning algorithms provided in the toolbox or
develop your own. You can experiment with hyperparameter settings, monitor training progress, and
simulate trained agents either interactively through the app or programmatically. To improve training
performance, simulations can be run in parallel on multiple CPUs, GPUs, computer clusters, and the
cloud (with Parallel Computing Toolbox™ and MATLAB Parallel Server™).

Through the ONNX™ model format, existing policies can be imported from deep learning frameworks
such as TensorFlow™ Keras and PyTorch (with Deep Learning Toolbox™). You can generate optimized
C, C++, and CUDA® code to deploy trained policies on microcontrollers and GPUs. The toolbox
includes reference examples to help you get started.
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What Is Reinforcement Learning?
Reinforcement learning is a goal-directed computational approach where a computer learns to
perform a task by interacting with an unknown dynamic environment. This learning approach enables
a computer to make a series of decisions to maximize the cumulative reward for the task without
human intervention and without being explicitly programmed to achieve the task. The following
diagram shows a general representation of a reinforcement learning scenario.

The goal of reinforcement learning is to train an agent to complete a task within an unknown
environment. The agent receives observations and a reward from the environment and sends actions
to the environment. The reward is a measure of how successful an action is with respect to
completing the task goal.

The agent contains two components: a policy and a learning algorithm.

• The policy is a mapping that selects actions based on the observations from the environment.
Typically, the policy is a function approximator with tunable parameters, such as a deep neural
network.

• The learning algorithm continuously updates the policy parameters based on the actions,
observations, and reward. The goal of the learning algorithm is to find an optimal policy that
maximizes the cumulative reward received during the task.

In other words, reinforcement learning involves an agent learning the optimal behavior through
repeated trial-and-error interactions with the environment without human involvement.

As an example, consider the task of parking a vehicle using an automated driving system. The goal of
this task is for the vehicle computer (agent) to park the vehicle in the correct position and
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orientation. To do so, the controller uses readings from cameras, accelerometers, gyroscopes, a GPS
receiver, and lidar (observations) to generate steering, braking, and acceleration commands
(actions). The action commands are sent to the actuators that control the vehicle. The resulting
observations depend on the actuators, sensors, vehicle dynamics, road surface, wind, and many other
less-important factors. All these factors, that is, everything that is not the agent, make up the
environment in reinforcement learning.

To learn how to generate the correct actions from the observations, the computer repeatedly tries to
park the vehicle using a trial-and-error process. To guide the learning process, you provide a signal
that is one when the car successfully reaches the desired position and orientation and zero otherwise
(reward). During each trial, the computer selects actions using a mapping (policy) initialized with
some default values. After each trial, the computer updates the mapping to maximize the reward
(learning algorithm). This process continues until the computer learns an optimal mapping that
successfully parks the car.

Reinforcement Learning Workflow
The general workflow for training an agent using reinforcement learning includes the following steps.

1 Formulate problem — Define the task for the agent to learn, including how the agent interacts
with the environment and any primary and secondary goals the agent must achieve.

2 Create environment — Define the environment within which the agent operates, including the
interface between agent and environment and the environment dynamic model. For more
information, see “Create MATLAB Reinforcement Learning Environments” on page 2-2 and
“Create Simulink Reinforcement Learning Environments” on page 2-8.

3 Define reward — Specify the reward signal that the agent uses to measure its performance
against the task goals and how to calculate this signal from the environment. For more
information, see “Define Reward Signals” on page 2-14.

4 Create agent — Create the agent, which includes defining a policy approximator (actor) an
value function approximator (critic) and configuring the agent learning algorithm. For more
information, see “Create Policies and Value Functions” on page 4-2 and “Reinforcement
Learning Agents” on page 3-2.

5 Train agent — Train the agent approximators using the defined environment, reward, and agent
learning algorithm. For more information, see “Train Reinforcement Learning Agents” on page 5-
3.

6 Validate agent — Evaluate the performance of the trained agent by simulating the agent and
environment together. For more information, see “Train Reinforcement Learning Agents” on page
5-3.
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7 Deploy policy — Deploy the trained policy approximator using, for example, generated GPU
code. For more information, see “Deploy Trained Reinforcement Learning Policies” on page 6-
2.

Training an agent using reinforcement learning is an iterative process. Decisions and results in later
stages can require you to return to an earlier stage in the learning workflow. For example, if the
training process does not converge to an optimal policy within a reasonable amount of time, you
might have to update some of the following before retraining the agent:

• Training settings
• Learning algorithm configuration
• Policy and value function (actor and critic) approximators
• Reward signal definition
• Action and observation signals
• Environment dynamics

See Also

More About
• “Reinforcement Learning for Control Systems Applications” on page 1-6
• “Create Simulink Environment and Train Agent” on page 1-20
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Reinforcement Learning for Control Systems Applications
The behavior of a reinforcement learning policy—that is, how the policy observes the environment
and generates actions to complete a task in an optimal manner—is similar to the operation of a
controller in a control system. Reinforcement learning can be translated to a control system
representation using the following mapping.

Reinforcement Learning Control Systems
Policy Controller
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Reinforcement Learning Control Systems
Environment Everything that is not the controller — In the preceding diagram, the

environment includes the plant, the reference signal, and the
calculation of the error. In general, the environment can also include
additional elements, such as:

• Measurement noise
• Disturbance signals
• Filters
• Analog-to-digital and digital-to-analog converters

Observation Any measurable value from the environment that is visible to the agent
— In the preceding diagram, the controller can see the error signal
from the environment. You can also create agents that observe, for
example, the reference signal, measurement signal, and measurement
signal rate of change.

Action Manipulated variables or control actions
Reward Function of the measurement, error signal, or some other performance

metric — For example, you can implement reward functions that
minimize the steady-state error while minimizing control effort. When
control specifications such as cost and constraint functions are
available, you can use generateRewardFunction to generate a
reward function from an MPC object or model verification blocks. You
can then use the generated reward function as a starting point for
reward design, for example by changing the weights or penalty
functions.

Learning Algorithm Adaptation mechanism of an adaptive controller

Many control problems encountered in areas such as robotics and automated driving require
complex, nonlinear control architectures. Techniques such as gain scheduling, robust control, and
nonlinear model predictive control (MPC) can be used for these problems, but often require
significant domain expertise from the control engineer. For example, gains and parameters are
difficult to tune. The resulting controllers can pose implementation challenges, such as the
computational intensity of nonlinear MPC.

You can use deep neural networks, trained using reinforcement learning, to implement such complex
controllers. These systems can be self-taught without intervention from an expert control engineer.
Also, once the system is trained, you can deploy the reinforcement learning policy in a
computationally efficient way.

You can also use reinforcement learning to create an end-to-end controller that generates actions
directly from raw data, such as images. This approach is attractive for video-intensive applications,
such as automated driving, since you do not have to manually define and select image features.

See Also

More About
• “What Is Reinforcement Learning?” on page 1-3
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• “Create MATLAB Reinforcement Learning Environments” on page 2-2
• “Create Simulink Reinforcement Learning Environments” on page 2-8
• “Define Reward Signals” on page 2-14
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Train Reinforcement Learning Agent in MDP Environment
This example shows how to train a Q-learning agent to solve a generic Markov decision process
(MDP) environment. For more information on these agents, see “Q-Learning Agents” on page 3-15.

The MDP environment has the following graph.

Here:

1 Each circle represents a state.
2 At each state there is a decision to go up or down.
3 The agent begins from state 1.
4 The agent receives a reward equal to the value on each transition in the graph.
5 The training goal is to collect the maximum cumulative reward.

Create MDP Environment

Create an MDP model with eight states and two actions ("up" and "down").

MDP = createMDP(8,["up";"down"]);

To model the transitions from the above graph, modify the state transition matrix and reward matrix
of the MDP. By default, these matrices contain zeros. For more information on creating an MDP model
and the properties of an MDP object, see createMDP.

Specify the state transition and reward matrices for the MDP. For example, in the following
commands:

• The first two lines specify the transition from state 1 to state 2 by taking action 1 ("up") and a
reward of +3 for this transition.

• The next two lines specify the transition from state 1 to state 3 by taking action 2 ("down") and a
reward of +1 for this transition.
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MDP.T(1,2,1) = 1;
MDP.R(1,2,1) = 3;
MDP.T(1,3,2) = 1;
MDP.R(1,3,2) = 1;

Similarly, specify the state transitions and rewards for the remaining rules in the graph.

% State 2 transition and reward
MDP.T(2,4,1) = 1;
MDP.R(2,4,1) = 2;
MDP.T(2,5,2) = 1;
MDP.R(2,5,2) = 1;
% State 3 transition and reward
MDP.T(3,5,1) = 1;
MDP.R(3,5,1) = 2;
MDP.T(3,6,2) = 1;
MDP.R(3,6,2) = 4;
% State 4 transition and reward
MDP.T(4,7,1) = 1;
MDP.R(4,7,1) = 3;
MDP.T(4,8,2) = 1;
MDP.R(4,8,2) = 2;
% State 5 transition and reward
MDP.T(5,7,1) = 1;
MDP.R(5,7,1) = 1;
MDP.T(5,8,2) = 1;
MDP.R(5,8,2) = 9;
% State 6 transition and reward
MDP.T(6,7,1) = 1;
MDP.R(6,7,1) = 5;
MDP.T(6,8,2) = 1;
MDP.R(6,8,2) = 1;
% State 7 transition and reward
MDP.T(7,7,1) = 1;
MDP.R(7,7,1) = 0;
MDP.T(7,7,2) = 1;
MDP.R(7,7,2) = 0;
% State 8 transition and reward
MDP.T(8,8,1) = 1;
MDP.R(8,8,1) = 0;
MDP.T(8,8,2) = 1;
MDP.R(8,8,2) = 0;

Specify states "s7" and "s8" as terminal states of the MDP.

MDP.TerminalStates = ["s7";"s8"];

Create the reinforcement learning MDP environment for this process model.

env = rlMDPEnv(MDP);

To specify that the initial state of the agent is always state 1, specify a reset function that returns the
initial agent state. This function is called at the start of each training episode and simulation. Create
an anonymous function handle that sets the initial state to 1.

env.ResetFcn = @() 1;

Fix the random generator seed for reproducibility.
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rng(0)

Create Q-Learning Agent

To create a Q-learning agent, first create a Q table using the observation and action specifications
from the MDP environment. Set the learning rate of the representation to 1.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
qTable = rlTable(obsInfo, actInfo);
qFunction = rlQValueFunction(qTable, obsInfo, actInfo);
qOptions = rlOptimizerOptions("LearnRate",1);

Next, create a Q-learning agent using this table representation, configuring the epsilon-greedy
exploration. For more information on creating Q-learning agents, see rlQAgent and
rlQAgentOptions.

agentOpts = rlQAgentOptions;
agentOpts.DiscountFactor = 1;
agentOpts.EpsilonGreedyExploration.Epsilon = 0.9;
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 0.01;
agentOpts.CriticOptimizerOptions = qOptions;
qAgent = rlQAgent(qFunction,agentOpts); %#ok<NASGU> 

Train Q-Learning Agent

To train the agent, first specify the training options. For this example, use the following options:

• Train for at most 500 episodes, with each episode lasting at most 50 time steps.
• Stop training when the agent receives an average cumulative reward greater than 10 over 30

consecutive episodes.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes = 500;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 13;
trainOpts.ScoreAveragingWindowLength = 30;

Train the agent using the train function. This may take several minutes to complete. To save time
while running this example, load a pretrained agent by setting doTraining to false. To train the
agent yourself, set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(qAgent,env,trainOpts); %#ok<UNRCH> 
else
    % Load pretrained agent for the example.
    load('genericMDPQAgent.mat','qAgent'); 
end
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Validate Q-Learning Results

To validate the training results, simulate the agent in the training environment using the sim
function. The agent successfully finds the optimal path which results in cumulative reward of 13.

Data = sim(qAgent,env);
cumulativeReward = sum(Data.Reward)

cumulativeReward = 13

Since the discount factor is set to 1, the values in the Q table of the trained agent match the
undiscounted returns of the environment.

QTable = getLearnableParameters(getCritic(qAgent));
QTable{1}

ans = 8×2

   12.9874    7.0759
   -7.6425    9.9990
   10.7193    0.9090
    5.9128   -2.2466
    6.7830    8.9988
    7.5928   -5.5053
         0         0
         0         0
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TrueTableValues = [13,12;5,10;11,9;3,2;1,9;5,1;0,0;0,0]

TrueTableValues = 8×2

    13    12
     5    10
    11     9
     3     2
     1     9
     5     1
     0     0
     0     0

See Also
rlMDPEnv | createMDP

More About
• “Reinforcement Learning Agents” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-3
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Train Reinforcement Learning Agent in Basic Grid World
This example shows how to solve a grid world environment using reinforcement learning by training
Q-learning and SARSA agents. For more information on these agents, see “Q-Learning Agents” on
page 3-15 and “SARSA Agents” on page 3-18.

This grid world environment has the following configuration and rules:

1 The grid world is 5-by-5 and bounded by borders, with four possible actions (North = 1, South =
2, East = 3, West = 4).

2 The agent begins from cell [2,1] (second row, first column).
3 The agent receives a reward +10 if it reaches the terminal state at cell [5,5] (blue).
4 The environment contains a special jump from cell [2,4] to cell [4,4] with a reward of +5.
5 The agent is blocked by obstacles (black cells).
6 All other actions result in –1 reward.

Create Grid World Environment

Create the basic grid world environment.

env = rlPredefinedEnv("BasicGridWorld");

To specify that the initial state of the agent is always [2,1], create a reset function that returns the
state number for the initial agent state. This function is called at the start of each training episode
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and simulation. States are numbered starting at position [1,1]. The state number increases as you
move down the first column and then down each subsequent column. Therefore, create an anonymous
function handle that sets the initial state to 2.

env.ResetFcn = @() 2;

Fix the random generator seed for reproducibility.

rng(0)

Create Q-Learning Agent

To create a Q-learning agent, first create a Q table using the observation and action specifications
from the grid world environment. Set the learning rate of the optimizer to 0.01.

qTable = rlTable(getObservationInfo(env),getActionInfo(env));
qFunction = rlQValueFunction(qTable,getObservationInfo(env),getActionInfo(env));
qOptions = rlOptimizerOptions("LearnRate",0.01);

Next, create a Q-learning agent using the Q value function and configure the epsilon-greedy
exploration. For more information on creating Q-learning agents, see rlQAgent and
rlQAgentOptions.

agentOpts = rlQAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = .04;
agentOpts.CriticOptimizerOptions = qOptions;
qAgent = rlQAgent(qFunction,agentOpts);

Train Q-Learning Agent

To train the agent, first specify the training options. For this example, use the following options:

• Train for at most 200 episodes. Specify that each episode lasts for most 50 time steps.
• Stop training when the agent receives an average cumulative reward greater than 10 over 30

consecutive episodes.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes= 200;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 11;
trainOpts.ScoreAveragingWindowLength = 30;

Train the Q-learning agent using the train function. Training can take several minutes to complete.
To save time while running this example, load a pretrained agent by setting doTraining to false.
To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(qAgent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('basicGWQAgent.mat','qAgent')
end
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The Episode Manager window opens and displays the training progress.

Validate Q-Learning Results

To validate the training results, simulate the agent in the training environment.

Before running the simulation, visualize the environment and configure the visualization to maintain a
trace of the agent states.

plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;

Simulate the agent in the environment using the sim function.

sim(qAgent,env)
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The agent trace shows that the agent successfully finds the jump from cell [2,4] to cell [4,4].

Create and Train SARSA Agent

To create a SARSA agent, use the same Q value function and epsilon-greedy configuration as for the
Q-learning agent. For more information on creating SARSA agents, see rlSARSAAgent and
rlSARSAAgentOptions.

agentOpts = rlSARSAAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = 0.04;
agentOpts.CriticOptimizerOptions = qOptions;
sarsaAgent = rlSARSAAgent(qFunction,agentOpts);

Train the SARSA agent using the train function. Training can take several minutes to complete. To
save time while running this example, load a pretrained agent by setting doTraining to false. To
train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(sarsaAgent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('basicGWSarsaAgent.mat','sarsaAgent')
end
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Validate SARSA Training

To validate the training results, simulate the agent in the training environment.

plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;

Simulate the agent in the environment.

sim(sarsaAgent,env)
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The SARSA agent finds the same grid world solution as the Q-learning agent.

See Also
rlMDPEnv | createGridWorld

More About
• “Reinforcement Learning Agents” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-3
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Create Simulink Environment and Train Agent
This example shows how to convert the PI controller in the watertank Simulink® model to a
reinforcement learning deep deterministic policy gradient (DDPG) agent. For an example that trains a
DDPG agent in MATLAB®, see “Train DDPG Agent to Control Double Integrator System” on page 5-
47.

Water Tank Model

The original model for this example is the water tank model. The goal is to control the level of the
water in the tank. For more information about the water tank model, see “watertank Simulink Model”
(Simulink Control Design).

Modify the original model by making the following changes:

1 Delete the PID Controller.
2 Insert the RL Agent block.
3 Connect the observation vector ∫e dt e h T , where h is the height of the tank, e = r − h, and r is

the reference height.
4 Set up the reward reward = 10 e < 0 . 1 − 1 e ≥ 0 . 1 − 100 h ≤ 0 h ≥ 20 .
5 Configure the termination signal such that the simulation stops if h ≤ 0 or h ≥ 20.

The resulting model is rlwatertank.slx. For more information on this model and the changes, see
“Create Simulink Reinforcement Learning Environments” on page 2-8.

open_system('rlwatertank')
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Create Environment Interface

Creating an environment model includes defining the following:

• Action and observation signals that the agent uses to interact with the environment. For more
information, see rlNumericSpec and rlFiniteSetSpec.

• Reward signal that the agent uses to measure its success. For more information, see “Define
Reward Signals” on page 2-14.

Define the observation specification obsInfo and action specification actInfo.

obsInfo = rlNumericSpec([3 1],...
    'LowerLimit',[-inf -inf 0  ]',...
    'UpperLimit',[ inf  inf inf]');
obsInfo.Name = 'observations';
obsInfo.Description = 'integrated error, error, and measured height';
numObservations = obsInfo.Dimension(1);

actInfo = rlNumericSpec([1 1]);
actInfo.Name = 'flow';
numActions = actInfo.Dimension(1);

Build the environment interface object.

env = rlSimulinkEnv('rlwatertank','rlwatertank/RL Agent',...
    obsInfo,actInfo);

Set a custom reset function that randomizes the reference values for the model.

env.ResetFcn = @(in)localResetFcn(in);

Specify the simulation time Tf and the agent sample time Ts in seconds.

Ts = 1.0;
Tf = 200;
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Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

Given observations and actions, a DDPG agent approximates the long-term reward using a critic
value function representation. To create the critic, first create a deep neural network with two inputs,
the observation and action, and one output. For more information on creating a deep neural network
value function representation, see “Create Policies and Value Functions” on page 4-2.

statePath = [
    featureInputLayer(numObservations,'Normalization','none','Name','State')
    fullyConnectedLayer(50,'Name','CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(25,'Name','CriticStateFC2')];
actionPath = [
    featureInputLayer(numActions,'Normalization','none','Name','Action')
    fullyConnectedLayer(25,'Name','CriticActionFC1')];
commonPath = [
    additionLayer(2,'Name','add')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)
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Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation specifications for the critic, which you obtain from the
environment interface. For more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},criticOpts);

Given observations, a DDPG agent decides which action to take using an actor representation. To
create the actor, first create a deep neural network with one input, the observation, and one output,
the action.

Construct the actor in a similar manner to the critic. For more information, see
rlDeterministicActorRepresentation.

actorNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','State')
    fullyConnectedLayer(3, 'Name','actorFC')
    tanhLayer('Name','actorTanh')
    fullyConnectedLayer(numActions,'Name','Action')
    ];

actorOptions = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},actorOptions);
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To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
    'SampleTime',Ts,...
    'TargetSmoothFactor',1e-3,...
    'DiscountFactor',1.0, ...
    'MiniBatchSize',64, ...
    'ExperienceBufferLength',1e6); 
agentOpts.NoiseOptions.Variance = 0.3;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training for at most 5000 episodes. Specify that each episode lasts for at most
ceil(Tf/Ts) (that is 200) time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 800 over 20
consecutive episodes. At this point, the agent can control the level of water in the tank.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes, ...
    'MaxStepsPerEpisode',maxsteps, ...
    'ScoreAveragingWindowLength',20, ...
    'Verbose',false, ...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',800);

Train the agent using the train function. Training is a computationally intensive process that takes
several minutes to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('WaterTankDDPG.mat','agent')
end
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Validate Trained Agent

Validate the learned agent against the model by simulation.

simOpts = rlSimulationOptions('MaxSteps',maxsteps,'StopOnError','on');
experiences = sim(env,agent,simOpts);
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Local Function

function in = localResetFcn(in)

% randomize reference signal
blk = sprintf('rlwatertank/Desired \nWater Level');
h = 3*randn + 10;
while h <= 0 || h >= 20
    h = 3*randn + 10;
end
in = setBlockParameter(in,blk,'Value',num2str(h));

% randomize initial height
h = 3*randn + 10;
while h <= 0 || h >= 20
    h = 3*randn + 10;
end
blk = 'rlwatertank/Water-Tank System/H';
in = setBlockParameter(in,blk,'InitialCondition',num2str(h));

end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Simulink Reinforcement Learning Environments” on page 2-8

 Create Simulink Environment and Train Agent

1-27





Create Environments

• “Create MATLAB Reinforcement Learning Environments” on page 2-2
• “Create MATLAB Environments for Reinforcement Learning Designer” on page 2-5
• “Create Simulink Reinforcement Learning Environments” on page 2-8
• “Create Simulink Environments for Reinforcement Learning Designer” on page 2-11
• “Define Reward Signals” on page 2-14
• “Load Predefined Grid World Environments” on page 2-17
• “Load Predefined Control System Environments” on page 2-23
• “Load Predefined Simulink Environments” on page 2-30
• “Create Custom Grid World Environments” on page 2-36
• “Create MATLAB Environment Using Custom Functions” on page 2-41
• “Create Custom MATLAB Environment from Template” on page 2-48
• “Water Tank Reinforcement Learning Environment Model” on page 2-54
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Create MATLAB Reinforcement Learning Environments
In a reinforcement learning scenario, where you train an agent to complete a task, the environment
models the external system (that is the world) with which the agent interacts. In control systems
applications, this external system is often referred to as the plant.

As shown in the following figure, the environment:

1 Receives actions from the agent.
2 Returns observations in response to the actions.
3 Generates a reward measuring how well the action contributes to achieving the task.

Creating an environment model involves defining:

• Action and observation signals that the agent uses to interact with the environment.
• A reward signal that the agent uses to measure its success. For more information, see “Define

Reward Signals” on page 2-14.
• The environment initial condition and its dynamic behavior.

Action and Observation Signals
When you create the environment object, you must specify the action and observation signals that the
agent uses to interact with the environment. You can create both discrete and continuous action and
observation spaces. For more information, see rlNumericSpec and rlFiniteSetSpec,
respectively.
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What signals you select as actions and observations depends on your application. For example, for
control system applications, the integrals (and sometimes derivatives) of error signals are often
useful observations. Also, for reference-tracking applications, having a time-varying reference signal
as an observation is helpful.

When you define your observation signals, ensure that all the environment states (or their estimation)
are included in the observation vector. This is a good practice because the agent is often a static
function which lacks internal memory or state, and so it might not be able to successfully reconstruct
the environment state internally.

For example, an image observation of a swinging pendulum has position information but does not
have enough information, by itself, to determine the pendulum velocity. In this case, you can measure
or estimate the pendulum velocity as an additional entry in the observation vector.

Predefined MATLAB Environments
The Reinforcement Learning Toolbox software provides some predefined MATLAB environments for
which the actions, observations, rewards, and dynamics are already defined. You can use these
environments to:

• Learn reinforcement learning concepts.
• Gain familiarity with Reinforcement Learning Toolbox software features.
• Test your own reinforcement learning agents.

For more information, see “Load Predefined Grid World Environments” on page 2-17 and “Load
Predefined Control System Environments” on page 2-23.

Custom MATLAB Environments
You can create the following types of custom MATLAB environments for your own applications.

• Grid worlds with specified size, rewards, and obstacles
• Environments with dynamics specified using custom functions
• Environments specified by creating and modifying a template environment object

Once you create a custom environment object, you can train an agent in the same manner as in a
predefined environment. For more information on training agents, see “Train Reinforcement Learning
Agents” on page 5-3.

Custom Grid Worlds

You can create custom grid worlds of any size with your own custom reward, state transition, and
obstacle configurations. To create a custom grid world environment:

1 Create a grid world model using the createGridWorld function. For example, create a grid
world named gw with ten rows and nine columns.

gw = createGridWorld(10,9);
2 Configure the grid world by modifying the properties of the model. For example, specify the

terminal state as the location [7,9]

gw.TerminalStates = "[7,9]";
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3 A grid world needs to be included in a Markov decision process (MDP) environment. Create an
MDP environment for this grid world, which the agent uses to interact with the grid world model.

env = rlMDPEnv(gw);

For more information on custom grid worlds, see “Create Custom Grid World Environments” on page
2-36.

Specify Custom Functions

For simple environments, you can define a custom environment object by creating an
rlFunctionEnv object and specifying your own custom reset and step functions.

• At the beginning of each training episode, the agent calls the reset function to set the environment
initial condition. For example, you can specify known initial state values or place the environment
into a random initial state.

• The step function defines the dynamics of the environment, that is, how the state changes as a
function of the current state and the agent action. At each training time step, the state of the
model is updated using the step function.

For more information, see “Create MATLAB Environment Using Custom Functions” on page 2-41.

Create and Modify Template Environment

For more complex environments, you can define a custom environment by creating and modifying a
template environment. To create a custom environment:

1 Create an environment template class using the rlCreateEnvTemplate function.
2 Modify the template environment, specifying environment properties, required environment

functions, and optional environment functions.
3 Validate your custom environment using validateEnvironment.

For more information, see “Create Custom MATLAB Environment from Template” on page 2-48.

See Also
rlPredefinedEnv | rlFunctionEnv | rlCreateEnvTemplate

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Create MATLAB Environments for Reinforcement Learning Designer” on page 2-5
• “Create Simulink Reinforcement Learning Environments” on page 2-8
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Create MATLAB Environments for Reinforcement Learning
Designer

When training an agent using the Reinforcement Learning Designer app, you can create a
predefined MATLAB environment from within the app or import a custom environment.

To create a predefined environment, on the Reinforcement Learning tab, in the Environment
section, click New. Then, under MATLAB Environments, select one of the predefined environments.

To use a custom environment, you must first create the environment at the MATLAB command line
and then import the environment into Reinforcement Learning Designer. For more information on
creating such an environment, see “Create MATLAB Reinforcement Learning Environments” on page
2-2.

Once you create a custom environment using one of the methods described in the preceding section,
import the environment into Reinforcement Learning Designer. On the Reinforcement Learning
tab, click Import. Then, under Select Environment, select the environment.

 Create MATLAB Environments for Reinforcement Learning Designer
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Once you have created or imported an environment, the app adds the environment to the
Environments pane.
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Once you have created an environment, you can create an agent to train in that environment. For
more information, see “Create Agents Using Reinforcement Learning Designer” on page 3-7.

See Also
Reinforcement Learning Designer

Related Examples
• “Create MATLAB Reinforcement Learning Environments” on page 2-2
• “Create Simulink Environments for Reinforcement Learning Designer” on page 2-11
• “Create Agents Using Reinforcement Learning Designer” on page 3-7
• “Design and Train Agent Using Reinforcement Learning Designer” on page 5-12

 Create MATLAB Environments for Reinforcement Learning Designer

2-7



Create Simulink Reinforcement Learning Environments
In a reinforcement learning scenario, where you train an agent to complete a task, the environment
models the dynamics with which the agent interacts. As shown in the following figure, the
environment:

1 Receives actions from the agent.
2 Outputs observations in response to the actions.
3 Generates a reward measuring how well the action contributes to achieving the task.

Creating an environment model includes defining the following:

• Action and observation signals that the agent uses to interact with the environment.
• Reward signal that the agent uses to measure its success. For more information, see “Define

Reward Signals” on page 2-14.
• Environment dynamic behavior.

Action and Observation Signals
When you create an environment object, you must specify the action and observation signals that the
agent uses to interact with the environment. You can create both discrete and continuous action
spaces. For more information, see rlNumericSpec and rlFiniteSetSpec, respectively.

What signals you select as actions and observations depends on your application. For example, for
control system applications, the integrals (and sometimes derivatives) of error signals are often
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useful observations. Also, for reference-tracking applications, having a time-varying reference signal
as an observation is helpful.

When you define your observation signals, ensure that all the system states are observable through
the observations. For example, an image observation of a swinging pendulum has position
information but does not have enough information to determine the pendulum velocity. In this case,
you can specify the pendulum velocity as a separate observation.

Predefined Simulink Environments
Reinforcement Learning Toolbox software provides predefined Simulink environments for which the
actions, observations, rewards, and dynamics are already defined. You can use these environments to:

• Learn reinforcement learning concepts.
• Gain familiarity with Reinforcement Learning Toolbox software features.
• Test your own reinforcement learning agents.

For more information, see “Load Predefined Simulink Environments” on page 2-30.

Custom Simulink Environments
To specify your own custom reinforcement learning environment, create a Simulink model with an RL
Agent block. In this model, connect the action, observation, and reward signals to the RL Agent block.
For an example, see “Water Tank Reinforcement Learning Environment Model” on page 2-54.

For the action and observation signals, you must create specification objects using rlNumericSpec
for continuous signals and rlFiniteSetSpec for discrete signals. For bus signals, create
specifications using bus2RLSpec.

For the reward signal, construct a scalar signal in the model and connect this signal to the RL Agent
block. For more information, see “Define Reward Signals” on page 2-14.

After configuring the Simulink model, create an environment object for the model using the
rlSimulinkEnv function.

If you have a reference model with an appropriate action input port, observation output port, and
scalar reward output port, you can automatically create a Simulink model that includes this reference
model and an RL Agent block. For more information, see createIntegratedEnv. This function
returns the environment object, action specifications, and observation specifications for the model.

Your environment can include third-party functionality. For more information, see “Integrate with
Existing Simulation or Environment” (Simulink).

See Also
rlPredefinedEnv | rlSimulinkEnv | createIntegratedEnv

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Create Simulink Environments for Reinforcement Learning Designer” on page 2-11
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• “Create MATLAB Reinforcement Learning Environments” on page 2-2
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Create Simulink Environments for Reinforcement Learning
Designer

When training an agent using the Reinforcement Learning Designer app, you can create a
predefined Simulink environment from within the app or import a custom environment.

To create a predefined environment, on the Reinforcement Learning tab, in the Environment
section, click New. Then, under Simulink Environments, select one of the predefined
environments.

To use a custom environment, you must first create the environment at the MATLAB command line
and then import the environment into Reinforcement Learning Designer. For more information on
creating a Simulink environment, see “Create Simulink Reinforcement Learning Environments” on
page 2-8.

For training and simulating Simulink environments, you must define all variables necessary for
running the Simulink mode in the MATLAB workspace.

Once you create a custom environment using one of the methods described in the preceding section,
import the environment into Reinforcement Learning Designer. On the Reinforcement Learning
tab, click Import. Then, under Select Environment, select the environment.
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Once you have created or imported an environment, the app adds the environment to the
Environments pane.
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Once you have created an environment, you can create an agent to train in that environment. For
more information, see “Create Agents Using Reinforcement Learning Designer” on page 3-7.

See Also
Reinforcement Learning Designer

Related Examples
• “Create Simulink Reinforcement Learning Environments” on page 2-8
• “Create MATLAB Environments for Reinforcement Learning Designer” on page 2-5
• “Create Agents Using Reinforcement Learning Designer” on page 3-7
• “Design and Train Agent Using Reinforcement Learning Designer” on page 5-12
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Define Reward Signals
To guide the learning process, reinforcement learning uses a scalar reward signal generated from the
environment. This signal measures the performance of the agent with respect to the task goals. In
other words, for a given observation (state), the reward measures the effectiveness of taking a
particular action. During training, an agent updates its policy based on the rewards received for
different state-action combinations. For more information on the different types of agents and how
they use the reward signal during training, see “Reinforcement Learning Agents” on page 3-2.

In general, you provide a positive reward to encourage certain agent actions and a negative reward
(penalty) to discourage other actions. A well-designed reward signal guides the agent to maximize the
expectation of the long-term reward. What constitutes a well-designed reward depends on your
application and the agent goals.

For example, when an agent must perform a task for as long as possible, a common strategy is to
provide a small positive reward for each time step that the agent successfully performs the task and a
large penalty when the agent fails. This approach encourages longer training episodes while heavily
discouraging episodes that fail. For an example that uses this approach, see “Train DQN Agent to
Balance Cart-Pole System” on page 5-24.

If your reward function incorporates multiple signals, such as position, velocity, and control effort,
you must consider the relative sizes of the signals and scale their contributions to the reward signal
accordingly.

You can specify either continuous or discrete reward signals. In either case, you must provide a
reward signal that provides rich information when the action and observation signals change.

For applications where control system specifications like cost functions and constraints are already
available, you can also use generate rewards functions from such specifications.

Continuous Rewards
A continuous reward function varies continuously with changes in the environment observations and
actions. In general, continuous reward signals improve convergence during training and can lead to
simpler network structures.

An example of a continuous reward is the quadratic regulator (QR) cost function, where the long-term
reward can be expressed as

Ji = − sτ
TQτsτ + ∑

j = i

τ
s j

TQ js j + a j
TR ja j + 2s j

TN ja j

Here, Qτ, Q, R, and N are the weight matrices. Qτ is the terminal weight matrix, applied only at the
end of the episode. Also, s is the observation vector, a is the action vector, and τ is the terminal
iteration of the episode. The instantaneous reward for this cost function is

ri = si
TQisi + ai

TRiai + 2si
TNiai

This QR reward structure encourages driving s to zero with minimal action effort. A QR-based reward
structure is a good reward to choose for regulation or stationary point problems, such as pendulum
swing-up or regulating the position of the double integrator. For training examples that use a QR
reward, see “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-53 and “Train DDPG
Agent to Control Double Integrator System” on page 5-47.
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Smooth continuous rewards, such as the QR regulator, are good for fine-tuning parameters and can
provide policies similar to optimal controllers (LQR/MPC).

Discrete Rewards
A discrete reward function varies discontinuously with changes in the environment observations or
actions. These types of reward signals can make convergence slower and can require more complex
network structures. Discrete rewards are usually implemented as events that occur in the
environment—for example, when an agent receives a positive reward if it exceeds some target value
or a penalty when it violates some performance constraint.

While discrete rewards can slow down convergence, they can also guide the agent toward better
reward regions in the state space of the environment. For example, a region-based reward, such as a
fixed reward when the agent is near a target location, can emulate final-state constraints. Also, a
region-based penalty can encourage an agent to avoid certain areas of the state space.

Mixed Rewards
In many cases, providing a mixed reward signal that has a combination of continuous and discrete
reward components is beneficial. The discrete reward signal can be used to drive the system away
from bad states, and the continuous reward signal can improve convergence by providing a smooth
reward near target states. For example, in “Train DDPG Agent to Control Flying Robot” on page 5-
121, the reward function has three components: r1, r2, and r3.

r1 = 10 xt
2 + yt

2 + θt
2 < 0.5

r2 = − 100 xt ≥ 20 yt ≥ 20

r3 = − 0.2 Rt − 1 + Lt − 1
2 + 0.3 Rt − 1− Lt − 1

2 + 0.03xt
2 + 0.03yt

2 + 0.02θt
2

r = r1 + r2 + r3

Here:

• r1 is a region-based continuous reward that applies only near the target location of the robot.
• r2 is a discrete signal that provides a large penalty when the robot moves far from the target

location.
• r3 is a continuous QR penalty that applies for all robot states.

Reward Generation from Control Specifications
For applications where a working control system already exists, specifications such as cost functions
or constraints might already be available. In these cases, you can use generateRewardFunction to
generate a reward function, coded in MATLAB, that can be used as a starting point for reward design.
This function allows you to generate rewards from:

• Cost and constraint specifications defined in an mpc or nlmpc controller object. This feature
requires Model Predictive Control Toolbox™ software.

• Performance constraints defined in Simulink Design Optimization™ model verification blocks.

In both cases, when constraints are violated, a negative reward is calculated using penalty functions
such as exteriorPenalty (default), hyperbolicPenalty or barrierPenalty functions.
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Starting from the generated reward function, you can tune the cost and penalty weights, use a
different penalty function, and then use the resulting reward function within an environment to train
an agent.

See Also
Functions
generateRewardFunction | exteriorPenalty | hyperbolicPenalty | barrierPenalty

More About
• “Create MATLAB Reinforcement Learning Environments” on page 2-2
• “Create Simulink Reinforcement Learning Environments” on page 2-8
• “Generate Reward Function from a Model Predictive Controller for a Servomotor” on page 5-

244
• “Generate Reward Function from a Model Verification Block for a Water Tank System” on page

5-254
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Load Predefined Grid World Environments
Reinforcement Learning Toolbox software provides several predefined grid world environments for
which the actions, observations, rewards, and dynamics are already defined. You can use these
environments to:

• Learn reinforcement learning concepts.
• Gain familiarity with Reinforcement Learning Toolbox software features.
• Test your own reinforcement learning agents.

You can load the following predefined MATLAB grid world environments using the
rlPredefinedEnv function.

Environment Agent Task
Basic grid world Move from a starting location to a target location on a two-

dimensional grid by selecting moves from the discrete action
space {N,S,E,W}.

Waterfall grid world Move from a starting location to a target location on a larger
two-dimensional grid with unknown deterministic or stochastic
dynamics.

For more information on the properties of grid world environments, see “Create Custom Grid World
Environments” on page 2-36.

You can also load predefined MATLAB control system environments. For more information, see “Load
Predefined Control System Environments” on page 2-23.

Basic Grid World
The basic grid world environment is a two-dimensional 5-by-5 grid with a starting location, terminal
location, and obstacles. The environment also contains a special jump from state [2,4] to state [4,4].
The goal of the agent is to move from the starting location to the terminal location while avoiding
obstacles and maximizing the total reward.

To create a basic grid world environment, use the rlPredefinedEnv function. This function creates
an rlMDPEnv object representing the grid world.

env = rlPredefinedEnv('BasicGridWorld');

You can visualize the grid world environment using the plot function.

• Agent location is a red circle. By default, the agent starts in state [1,1].
• Terminal location is a blue square.
• Obstacles are black squares.

plot(env)
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Actions

The agent can move in one of four possible directions (north, south, east, or west).

Rewards

The agent receives the following rewards or penalties:

• +10 reward for reaching the terminal state at [5,5]
• +5 reward for jumping from state [2,4] to state [4,4]
• -1 penalty for every other action

Deterministic Waterfall Grid Worlds
The deterministic waterfall grid world environment is a two-dimensional 8-by-7 grid with a starting
location and terminal location. The environment includes a waterfall that pushes the agent toward
the bottom of the grid. The goal of the agent is to move from the starting location to the terminal
location while maximizing the total reward.

To create a deterministic waterfall grid world, use the rlPredefinedEnv function. This function
creates an rlMDPEnv object representing the grid world.

env = rlPredefinedEnv('WaterFallGridWorld-Deterministic');

As with the basic grid world, you can visualize the environment, where the agent is a red circle and
the terminal location is a blue square.

plot(env)
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Actions

The agent can move in one of four possible directions (north, south, east, or west).

Rewards

The agent receives the following rewards or penalties:

• +10 reward for reaching the terminal state at [4,5]
• -1 penalty for every other action

Waterfall Dynamics

In this environment, a waterfall pushes the agent toward the bottom of the grid.
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The intensity of the waterfall varies between the columns, as shown at the top of the preceding
figure. When the agent moves into a column with a nonzero intensity, the waterfall pushes it
downward by the indicated number of squares. For example, if the agent goes east from state [5,2], it
reaches state [7,3].

Stochastic Waterfall Grid Worlds
The stochastic waterfall grid world environment is a two-dimensional 8-by-7 grid with a starting
location and terminal locations. The environment includes a waterfall that pushes the agent towards
the bottom of the grid with a stochastic intensity. The goal of the agent is to move from the starting
location to the target terminal location while avoiding the penalty terminal states along the bottom of
the grid and maximizing the total reward.

To create a stochastic waterfall grid world, use the rlPredefinedEnv function. This function
creates an rlMDPEnv object representing the grid world.

env = rlPredefinedEnv('WaterFallGridWorld-Stochastic');

As with the basic grid world, you can visualize the environment, where the agent is a red circle and
the terminal location is a blue square.

plot(env)
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Actions

The agent can move in one of four possible directions (north, south, east, or west).

Rewards

The agent receives the following rewards or penalties:

• +10 reward for reaching the terminal state at [4,5]
• -10 penalty for reaching any terminal state in the bottom row of the grid
• -1 penalty for every other action

Waterfall Dynamics

In this environment, a waterfall pushes the agent towards the bottom of the grid with a stochastic
intensity. The baseline intensity matches the intensity of the deterministic waterfall environment.
However, in the stochastic waterfall case, the agent has an equal chance of experiencing the
indicated intensity, one level above that intensity, or one level below that intensity. For example, if the
agent goes east from state [5,2], it has an equal chance of reaching state [6,3], [7,3], or [8,3].

See Also
rlPredefinedEnv | train | rlMDPEnv

More About
• “Create MATLAB Reinforcement Learning Environments” on page 2-2
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• “Load Predefined Control System Environments” on page 2-23
• “Train Reinforcement Learning Agents” on page 5-3

2 Create Environments

2-22



Load Predefined Control System Environments
Reinforcement Learning Toolbox software provides several predefined control system environments
for which the actions, observations, rewards, and dynamics are already defined. You can use these
environments to:

• Learn reinforcement learning concepts.
• Gain familiarity with Reinforcement Learning Toolbox software features.
• Test your own reinforcement learning agents.

You can load the following predefined MATLAB control system environments using the
rlPredefinedEnv function.

Environment Agent Task
Cart-pole Balance a pole on a moving cart by applying forces to the cart

using either a discrete or continuous action space.
Double integrator Control a second-order dynamic system using either a discrete

or continuous action space.
Simple pendulum with image
observation

Swing up and balance a simple pendulum using either a
discrete or continuous action space.

You can also load predefined MATLAB grid world environments. For more information, see “Load
Predefined Grid World Environments” on page 2-17.

Cart-Pole Environments
The goal of the agent in the predefined cart-pole environments is to balance a pole on a moving cart
by applying horizontal forces to the cart. The pole is considered successfully balanced if both of the
following conditions are satisfied:

• The pole angle remains within a given threshold of the vertical position, where the vertical
position is zero radians.

• The magnitude of the cart position remains below a given threshold.

There are two cart-pole environment variants, which differ by the agent action space.

• Discrete — Agent can apply a force of either Fmax or -Fmax to the cart, where Fmax is the MaxForce
property of the environment.

• Continuous — Agent can apply any force within the range [-Fmax,Fmax].

To create a cart-pole environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('CartPole-Discrete');
• Continuous action space

env = rlPredefinedEnv('CartPole-Continuous');

You can visualize the cart-pole environment using the plot function. The plot displays the cart as a
blue square and the pole as a red rectangle.
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plot(env)

To visualize the environment during training, call plot before training and keep the visualization
figure open.

For examples showing how to train agents in cart-pole environments, see the following:

• “Train DQN Agent to Balance Cart-Pole System” on page 5-24
• “Train PG Agent to Balance Cart-Pole System” on page 5-30
• “Train AC Agent to Balance Cart-Pole System” on page 5-35

Environment Properties

Property Description Default
Gravity Acceleration due to gravity in meters per second

squared
9.8

MassCart Mass of the cart in kilograms 1
MassPole Mass of the pole in kilograms 0.1
Length Half the length of the pole in meters 0.5
MaxForce Maximum horizontal force magnitude in newtons 10
Ts Sample time in seconds 0.02
ThetaThresholdRadia
ns

Pole angle threshold in radians 0.2094

XThreshold Cart position threshold in meters 2.4
RewardForNotFalling Reward for each time step the pole is balanced 1
PenaltyForFalling Reward penalty for failing to balance the pole Discrete — -5

Continuous — -50
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Property Description Default
State Environment state, specified as a column vector

with the following state variables:

• Cart position
• Derivative of cart position
• Pole angle
• Derivative of pole angle

[0 0 0 0]'

Actions

In the cart-pole environments, the agent interacts with the environment using a single action signal,
the horizontal force applied to the cart. The environment contains a specification object for this
action signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see getActionInfo.

Observations

In the cart-pole system, the agent can observe all the environment state variables in env.State. For
each state variable, the environment contains an rlNumericSpec observation specification. All the
states are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment consists of two components.

• A positive reward for each time step that the pole is balanced, that is, the cart and pole both
remain within their specified threshold ranges. This reward accumulates over the entire training
episode. To control the size of this reward, use the RewardForNotFalling property of the
environment.

• A one-time negative penalty if either the pole or cart moves outside of their threshold range. At
this point, the training episode stops. To control the size of this penalty, use the
PenaltyForFalling property of the environment.

Double Integrator Environments
The goal of the agent in the predefined double integrator environments is to control the position of a
mass in a second-order system by applying a force input. Specifically, the second-order system is a
double integrator with a gain.

Training episodes for these environments end when either of the following events occurs:

• The mass moves beyond a given threshold from the origin.
• The norm of the state vector is less than a given threshold.
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There are two double integrator environment variants, which differ by the agent action space.

• Discrete — Agent can apply a force of either Fmax or -Fmax to the cart, where Fmax is the MaxForce
property of the environment.

• Continuous — Agent can apply any force within the range [-Fmax,Fmax].

To create a double integrator environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('DoubleIntegrator-Discrete');

• Continuous action space

env = rlPredefinedEnv('DoubleIntegrator-Continuous');

You can visualize the double integrator environment using the plot function. The plot displays the
mass as a red rectangle.

plot(env)

To visualize the environment during training, call plot before training and keep the visualization
figure open.

For examples showing how to train agents in double integrator environments, see the following:

• “Train DDPG Agent to Control Double Integrator System” on page 5-47
• “Train PG Agent with Baseline to Control Double Integrator System” on page 5-41

Environment Properties

Property Description Default
Gain Gain for the double integrator 1
Ts Sample time in seconds 0.1
MaxDistance Distance magnitude threshold in meters 5
GoalThreshold State norm threshold 0.01
Q Weight matrix for observation component of

reward signal
[10 0; 0 1]
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Property Description Default
R Weight matrix for action component of reward

signal
0.01

MaxForce Maximum input force in newtons Discrete: 2

Continuous: Inf
State Environment state, specified as a column vector

with the following state variables:

• Mass position
• Derivative of mass position

[0 0]'

Actions

In the double integrator environments, the agent interacts with the environment using a single action
signal, the force applied to the mass. The environment contains a specification object for this action
signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see getActionInfo.

Observations

In the double integrator system, the agent can observe both of the environment state variables in
env.State. For each state variable, the environment contains an rlNumericSpec observation
specification. Both states are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment is the discrete-time equivalent of the following continuous-
time reward, which is analogous to the cost function of an LQR controller.

reward = −∫ x′Qx + u′Ru dt

Here:

• Q and R are environment properties.
• x is the environment state vector.
• u is the input force.

This reward is the episodic reward, that is, the cumulative reward across the entire training episode.

Simple Pendulum Environments with Image Observation
This environment is a simple frictionless pendulum that is initially hangs in a downward position. The
training goal is to make the pendulum stand upright without falling over using minimal control effort.
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There are two simple pendulum environment variants, which differ by the agent action space.

• Discrete — Agent can apply a torque of -2, -1, 0, 1, or 2 to the pendulum.
• Continuous — Agent can apply any torque within the range [-2,2].

To create a simple pendulum environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('SimplePendulumWithImage-Discrete');
• Continuous action space

env = rlPredefinedEnv('SimplePendulumWithImage-Continuous');

For examples showing how to train an agent in this environment, see the following:

• “Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation” on page 5-95
• “Create Agent Using Deep Network Designer and Train Using Image Observations” on page 5-103

Environment Properties

Property Description Default
Mass Pendulum mass 1
RodLength Pendulum length 1
RodInertia Pendulum moment of inertia 0
Gravity Acceleration due to gravity in meters per second

squared
9.81

DampingRatio Damping on pendulum motion 0
MaximumTorque Maximum input torque in newtons 2
Ts Sample time in seconds 0.05
State Environment state, specified as a column vector

with the following state variables:

• Pendulum angle
• Pendulum angular velocity

[0 0 ]'

Q Weight matrix for observation component of
reward signal

[1 0;0 0.1]

R Weight matrix for action component of reward
signal

1e-3

Actions

In the simple pendulum environments, the agent interacts with the environment using a single action
signal, the torque applied at the base of the pendulum. The environment contains a specification
object for this action signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see getActionInfo.
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Observations

In the simple pendulum environment, the agent receives the following observation signals:

• 50-by-50 grayscale image of the pendulum position
• Derivative of the pendulum angle

For each observation signal, the environment contains an rlNumericSpec observation specification.
All the observations are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment is

rt = − θt
2 + 0.1 ∗ θ̇t

2 + 0.001 ∗ ut − 1
2

Here:

• θt is the pendulum angle of displacement from the upright position.
• θ̇t is the derivative of the pendulum angle.
• ut-1 is the control effort from the previous time step.

See Also
rlPredefinedEnv | train

More About
• “Create MATLAB Reinforcement Learning Environments” on page 2-2
• “Load Predefined Grid World Environments” on page 2-17
• “Train Reinforcement Learning Agents” on page 5-3
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Load Predefined Simulink Environments
Reinforcement Learning Toolbox software provides predefined Simulink environments for which the
actions, observations, rewards, and dynamics are already defined. You can use these environments to:

• Learn reinforcement learning concepts.
• Gain familiarity with Reinforcement Learning Toolbox software features.
• Test your own reinforcement learning agents.

You can load the following predefined Simulink environments using the rlPredefinedEnv function.

Environment Agent Task
Simple pendulum Simulink model Swing up and balance a simple pendulum using either a

discrete or continuous action space.
Cart-pole Simscape™ model Balance a pole on a moving cart by applying forces to the cart

using either a discrete or continuous action space.

For predefined Simulink environments, the environment dynamics, observations, and reward signal
are defined in a corresponding Simulink model. The rlPredefinedEnv function creates a
SimulinkEnvWithAgent object that the train function uses to interact with the Simulink model.

Simple Pendulum Simulink Model
This environment is a simple frictionless pendulum that initially hangs in a downward position. The
training goal is to make the pendulum stand upright without falling over using minimal control effort.
The model for this environment is defined in the rlSimplePendulumModel Simulink model.

open_system('rlSimplePendulumModel')
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There are two simple pendulum environment variants, which differ by the agent action space.

• Discrete — Agent can apply a torque of either Tmax, 0, or -Tmax to the pendulum, where Tmax is the
max_tau variable in the model workspace.

• Continuous — Agent can apply any torque within the range [-Tmax,Tmax].

To create a simple pendulum environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('SimplePendulumModel-Discrete');

• Continuous action space

env = rlPredefinedEnv('SimplePendulumModel-Continuous');

For examples that train agents in the simple pendulum environment, see:

• “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-53
• “Train DDPG Agent to Swing Up and Balance Pendulum” on page 5-60

Actions

In the simple pendulum environments, the agent interacts with the environment using a single action
signal, the torque applied at the base of the pendulum. The environment contains a specification
object for this action signal. For the environment with a:
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• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see getActionInfo.

Observations

In the simple pendulum environment, the agent receives the following three observation signals,
which are constructed within the create observations subsystem.

• Sine of the pendulum angle
• Cosine of the pendulum angle
• Derivative of the pendulum angle

For each observation signal, the environment contains an rlNumericSpec observation specification.
All the observations are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment, which is constructed in the calculate reward subsystem, is

rt = − θt
2 + 0.1 ∗ θ̇t

2 + 0.001 ∗ ut − 1
2

Here:

• θt is the pendulum angle of displacement from the upright position.
• θ̇t is the derivative of the pendulum angle.

• ut-1 is the control effort from the previous time step.

Cart-Pole Simscape Model
The goal of the agent in the predefined cart-pole environments is to balance a pole on a moving cart
by applying horizontal forces to the cart. The pole is considered successfully balanced if both of the
following conditions are satisfied:

• The pole angle remains within a given threshold of the vertical position, where the vertical
position is zero radians.

• The magnitude of the cart position remains below a given threshold.

The model for this environment is defined in the rlCartPoleSimscapeModel Simulink model. The
dynamics of this model are defined using Simscape Multibody™.

open_system('rlCartPoleSimscapeModel')
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In the Environment subsystem, the model dynamics are defined using Simscape components and the
reward and observation are constructed using Simulink blocks.

open_system('rlCartPoleSimscapeModel/Environment')

There are two cart-pole environment variants, which differ by the agent action space.

• Discrete — Agent can apply a force of 15, 0, or -15 to the cart.
• Continuous — Agent can apply any force within the range [-15,15].

 Load Predefined Simulink Environments

2-33



To create a cart-pole environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('CartPoleSimscapeModel-Discrete');
• Continuous action space

env = rlPredefinedEnv('CartPoleSimscapeModel-Continuous');

For an example that trains an agent in this cart-pole environment, see “Train DDPG Agent to Swing
Up and Balance Cart-Pole System” on page 5-67.

Actions

In the cart-pole environments, the agent interacts with the environment using a single action signal,
the force applied to the cart. The environment contains a specification object for this action signal.
For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see getActionInfo.

Observations

In the cart-pole environment, the agent receives the following five observation signals.

• Sine of the pole angle
• Cosine of the pole angle
• Derivative of the pendulum angle
• Cart position
• Derivative of cart position

For each observation signal, the environment contains an rlNumericSpec observation specification.
All the observations are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment is the sum of two components (r = rqr + rn + rp):

• A quadratic regulator control reward, constructed in the Environment/qr reward subsystem.

rqr = − 0.1 ∗ x2 + 0.5 ∗ θ2 + 0.005 ∗ ut − 1
2

• A cart limit penalty, constructed in the Environment/x limit penalty subsystem. This
subsystem generates a negative reward when the magnitude of the cart position exceeds a given
threshold.

rp = − 100 ∗ x ≥ 3.5

Here:
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• x is the cart position.
• θ is the pole angle of displacement from the upright position.
• ut-1 is the control effort from the previous time step.

See Also
Blocks
RL Agent

Functions
rlPredefinedEnv | train

More About
• “Create Simulink Reinforcement Learning Environments” on page 2-8
• “Train Reinforcement Learning Agents” on page 5-3
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Create Custom Grid World Environments
A grid world is a two-dimensional, cell-based environment where the agent starts from one cell and
moves toward the terminal cell while collecting as much reward as possible. Grid world environments
are useful for applying reinforcement learning algorithms to discover optimal paths and policies for
agents on the grid to arrive at the terminal goal in the fewest moves.

Reinforcement Learning Toolbox lets you create custom MATLAB grid world environments for your
own applications. To create a custom grid world environment:

1 Create the grid world model.
2 Configure the grid world model.
3 Use the grid world model to create your own grid world environment.

Grid World Model
You can create your own grid world model using the createGridWorld function. Specify the grid
size when creating the GridWorld model object.

The GridWorld object has the following properties.

Property Read-
Only

Description

GridSize Yes Dimensions of the grid world, displayed as an m-by-n array. Here, m
represents the number of grid rows and n is the number of grid
columns.
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Property Read-
Only

Description

CurrentStat
e

No Name of the current state of the agent, specified as a string. You can
use this property to set the initial state of the agent. The agent always
starts from cell [1,1] by default.

The agent starts from the CurrentState once you use the reset
function in the rlMDPEnv environment object.

States Yes A string vector containing the state names of the grid world. For
instance, for a 2-by-2 grid world model GW, specify the following:

GW.States = ["[1,1]";
             "[2,1]";
             "[1,2]";
             "[2,2]"];

Actions Yes A string vector containing the list of possible actions that the agent can
use. You can set the actions when you create the grid world model by
using the moves argument:

GW = createGridWorld(m,n,moves)

Specify moves as either 'Standard' or 'Kings'.

moves Gw.Actions
'Standard' ['N';'S';'E';'W']
'Kings' ['N';'S';'E';'W';'NE';'NW';'SE';'SW']
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Property Read-
Only

Description

T No State transition matrix, specified as a 3-D array. T is a probability matrix
that indicates the likelihood of the agent moving from the current state
s to any possible next state s' by performing action a.

T can be denoted as

T s, s′, a   =  probability s′ s, a .

For instance, consider a 5-by-5 deterministic grid world object GW with
the agent in cell [3,1]. View the state transition matrix for the north
direction.

northStateTransition = GW.T(:,:,1)

From the above figure, the value of northStateTransition(3,2) is
1 since the agent moves from cell [3,1] to cell [2,1] with action 'N'.
A probability of 1 indicates that from a given state, if the agent goes
north, it has a 100% chance of moving one cell north on the grid. For an
example showing how to set up the state transition matrix, see “Train
Reinforcement Learning Agent in Basic Grid World” on page 1-14.
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Property Read-
Only

Description

R No Reward transition matrix, specified as a 3-D array. R determines how
much reward the agent receives after performing an action in the
environment. R has the same shape and size as the state transition
matrix T.

The reward transition matrix R can be denoted as

r  =  R s, s′, a .

Set up R such that there is a reward to the agent after every action. For
instance, you can set up a positive reward if the agent transitions over
obstacle states and when it reaches the terminal state. You can also set
up a default reward of -11 for all actions the agent takes, independent
of the current state and next state. For an example that show how to set
up the reward transition matrix, see “Train Reinforcement Learning
Agent in Basic Grid World” on page 1-14.

ObstacleSta
tes

No ObstacleStates are states that cannot be reached in the grid world,
specified as a string vector. Consider the following 5-by-5 grid world
model GW.

The black cells are obstacle states, and you can specify them using the
following syntax:

GW.ObstacleStates = ["[3,3]";"[3,4]";"[3,5]";"[4,3]"];

For a workflow example, see “Train Reinforcement Learning Agent in
Basic Grid World” on page 1-14.
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Property Read-
Only

Description

TerminalSta
tes

No TerminalStates are the final states in the grid world, specified as a
string vector. Consider the previous 5-by-5 grid world model GW. The
blue cell is the terminal state and you can specify it by:

GW.TerminalStates = "[5,5]";

For a workflow example, see “Train Reinforcement Learning Agent in
Basic Grid World” on page 1-14.

Grid World Environment
You can create a Markov decision process (MDP) environment using rlMDPEnv from the grid world
model from the previous step. MDP is a discrete-time stochastic control process. It provides a
mathematical framework for modeling decision making in situations where outcomes are partly
random and partly under the control of the decision maker. The agent uses the grid world
environment object rlMDPEnv to interact with the grid world model object GridWorld.

For more information, see rlMDPEnv and “Train Reinforcement Learning Agent in Basic Grid World”
on page 1-14.

See Also
createGridWorld | rlMDPEnv | rlPredefinedEnv

More About
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-14
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Create MATLAB Environment Using Custom Functions
This example shows how to create a cart-pole environment by supplying custom dynamic functions in
MATLAB®.

Using the rlFunctionEnv function, you can create a MATLAB reinforcement learning environment
from an observation specification, an action specification, and user-defined step and reset
functions. You can then train a reinforcement learning agent in this environment. The necessary step
and reset functions are already defined for this example.

Creating an environment using custom functions is useful for environments with less complex
dynamics, environments with no special visualization requirements, or environments with interfaces
to third-party libraries. For more complex environments, you can create an environment object using
a template class. For more information, see “Create Custom MATLAB Environment from Template” on
page 2-48.

For more information on creating reinforcement learning environments, see “Create MATLAB
Reinforcement Learning Environments” on page 2-2 and “Create Simulink Reinforcement Learning
Environments” on page 2-8.

Cart-Pole MATLAB Environment

The cart-pole environment is a pole attached to an unactuated joint on a cart, which moves along a
frictionless track. The training goal is to make the pendulum stand upright without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The pendulum starts upright with an initial angle that is between –0.05 and 0.05.
• The force action signal from the agent to the environment is from –10 to 10 N.
• The observations from the environment are the cart position, cart velocity, pendulum angle, and

pendulum angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical, or if the cart moves

more than 2.4 m from the original position.
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• A reward of +1 is provided for every time step that the pole remains upright. A penalty of –10 is
applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
23.

Observation and Action Specifications

The observations from the environment are the cart position, cart velocity, pendulum angle, and
pendulum angle derivative.

ObservationInfo = rlNumericSpec([4 1]);
ObservationInfo.Name = 'CartPole States';
ObservationInfo.Description = 'x, dx, theta, dtheta';

The environment has a discrete action space where the agent can apply one of two possible force
values to the cart: -10 or 10 N.

ActionInfo = rlFiniteSetSpec([-10 10]);
ActionInfo.Name = 'CartPole Action';

For more information on specifying environment actions and observations, see rlNumericSpec and
rlFiniteSetSpec.

Create Environment Using Function Names

To define a custom environment, first specify the custom step and reset functions. These functions
must be in your current working folder or on the MATLAB path.

The custom reset function sets the default state of the environment. This function must have the
following signature.

[InitialObservation,LoggedSignals] = myResetFunction()

To pass information from one step to the next, such as the environment state, use LoggedSignals.
For this example, LoggedSignals contains the states of the cart-pole environment: the position and
velocity of the cart, the pendulum angle, and the pendulum angle derivative. The reset function sets
the cart angle to a random value each time the environment is reset.

For this example, use the custom reset function defined in myResetFunction.m.

type myResetFunction.m

function [InitialObservation, LoggedSignal] = myResetFunction()
% Reset function to place custom cart-pole environment into a random
% initial state.

% Theta (randomize)
T0 = 2 * 0.05 * rand() - 0.05;
% Thetadot
Td0 = 0;
% X
X0 = 0;
% Xdot
Xd0 = 0;

% Return initial environment state variables as logged signals.
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LoggedSignal.State = [X0;Xd0;T0;Td0];
InitialObservation = LoggedSignal.State;

end

The custom step function specifies how the environment advances to the next state based on a given
action. This function must have the following signature.

[Observation,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals)

To get the new state, the environment applies the dynamic equation to the current state stored in
LoggedSignals, which is similar to giving an initial condition to a differential equation. The new
state is stored in LoggedSignals and returned as an output.

For this example, use the custom step function defined in myStepFunction.m. For implementation
simplicity, this function redefines physical constants, such as the cart mass, every time step is
executed.

type myStepFunction.m

function [NextObs,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals)
% Custom step function to construct cart-pole environment for the function
% name case.
%
% This function applies the given action to the environment and evaluates
% the system dynamics for one simulation step.

% Define the environment constants.

% Acceleration due to gravity in m/s^2
Gravity = 9.8;
% Mass of the cart
CartMass = 1.0;
% Mass of the pole
PoleMass = 0.1;
% Half the length of the pole
HalfPoleLength = 0.5;
% Max force the input can apply
MaxForce = 10;
% Sample time
Ts = 0.02;
% Pole angle at which to fail the episode
AngleThreshold = 12 * pi/180;
% Cart distance at which to fail the episode
DisplacementThreshold = 2.4;
% Reward each time step the cart-pole is balanced
RewardForNotFalling = 1;
% Penalty when the cart-pole fails to balance
PenaltyForFalling = -10;

% Check if the given action is valid.
if ~ismember(Action,[-MaxForce MaxForce])
    error('Action must be %g for going left and %g for going right.',...
        -MaxForce,MaxForce);
end
Force = Action;

% Unpack the state vector from the logged signals.
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State = LoggedSignals.State;
XDot = State(2);
Theta = State(3);
ThetaDot = State(4);

% Cache to avoid recomputation.
CosTheta = cos(Theta);
SinTheta = sin(Theta);
SystemMass = CartMass + PoleMass;
temp = (Force + PoleMass*HalfPoleLength*ThetaDot*ThetaDot*SinTheta)/SystemMass;

% Apply motion equations.
ThetaDotDot = (Gravity*SinTheta - CosTheta*temp) / ...
    (HalfPoleLength*(4.0/3.0 - PoleMass*CosTheta*CosTheta/SystemMass));
XDotDot  = temp - PoleMass*HalfPoleLength*ThetaDotDot*CosTheta/SystemMass;

% Perform Euler integration.
LoggedSignals.State = State + Ts.*[XDot;XDotDot;ThetaDot;ThetaDotDot];

% Transform state to observation.
NextObs = LoggedSignals.State;

% Check terminal condition.
X = NextObs(1);
Theta = NextObs(3);
IsDone = abs(X) > DisplacementThreshold || abs(Theta) > AngleThreshold;

% Get reward.
if ~IsDone
    Reward = RewardForNotFalling;
else
    Reward = PenaltyForFalling;
end

end

Construct the custom environment using the defined observation specification, action specification,
and function names.

env = rlFunctionEnv(ObservationInfo,ActionInfo,'myStepFunction','myResetFunction');

To verify the operation of your environment, rlFunctionEnv automatically calls
validateEnvironment after creating the environment.

Create Environment Using Function Handles

You can also define custom functions that have additional input arguments beyond the minimum
required set. For example, to pass the additional arguments arg1 and arg2 to both the step and rest
function, use the following code.

[InitialObservation,LoggedSignals] = myResetFunction(arg1,arg2)
[Observation,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals,arg1,arg2)

To use these functions with rlFunctionEnv, you must use anonymous function handles.

ResetHandle = @()myResetFunction(arg1,arg2);
StepHandle = @(Action,LoggedSignals) myStepFunction(Action,LoggedSignals,arg1,arg2);

For more information, see “Anonymous Functions”.
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Using additional input arguments can create a more efficient environment implementation. For
example, myStepFunction2.m contains a custom step function that takes the environment
constants as an input argument (envConstants). By doing so, this function avoids redefining the
environment constants at each step.

type myStepFunction2.m

function [NextObs,Reward,IsDone,LoggedSignals] = myStepFunction2(Action,LoggedSignals,EnvConstants)
% Custom step function to construct cart-pole environment for the function
% handle case.
%
% This function applies the given action to the environment and evaluates
% the system dynamics for one simulation step.

% Check if the given action is valid.
if ~ismember(Action,[-EnvConstants.MaxForce EnvConstants.MaxForce])
    error('Action must be %g for going left and %g for going right.',...
        -EnvConstants.MaxForce,EnvConstants.MaxForce);
end
Force = Action;

% Unpack the state vector from the logged signals.
State = LoggedSignals.State;
XDot = State(2);
Theta = State(3);
ThetaDot = State(4);

% Cache to avoid recomputation.
CosTheta = cos(Theta);
SinTheta = sin(Theta);
SystemMass = EnvConstants.MassCart + EnvConstants.MassPole;
temp = (Force + EnvConstants.MassPole*EnvConstants.Length*ThetaDot*ThetaDot*SinTheta)/SystemMass;

% Apply motion equations.
ThetaDotDot = (EnvConstants.Gravity*SinTheta - CosTheta*temp)...
    / (EnvConstants.Length*(4.0/3.0 - EnvConstants.MassPole*CosTheta*CosTheta/SystemMass));
XDotDot  = temp - EnvConstants.MassPole*EnvConstants.Length*ThetaDotDot*CosTheta/SystemMass;

% Perform Euler integration.
LoggedSignals.State = State + EnvConstants.Ts.*[XDot;XDotDot;ThetaDot;ThetaDotDot];

% Transform state to observation.
NextObs = LoggedSignals.State;

% Check terminal condition.
X = NextObs(1);
Theta = NextObs(3);
IsDone = abs(X) > EnvConstants.XThreshold || abs(Theta) > EnvConstants.ThetaThresholdRadians;

% Get reward.
if ~IsDone
    Reward = EnvConstants.RewardForNotFalling;
else
    Reward = EnvConstants.PenaltyForFalling;
end

end
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Create the structure that contains the environment constants.

% Acceleration due to gravity in m/s^2
envConstants.Gravity = 9.8;
% Mass of the cart
envConstants.MassCart = 1.0;
% Mass of the pole
envConstants.MassPole = 0.1;
% Half the length of the pole
envConstants.Length = 0.5;
% Max force the input can apply
envConstants.MaxForce = 10;
% Sample time
envConstants.Ts = 0.02;
% Angle at which to fail the episode
envConstants.ThetaThresholdRadians = 12 * pi/180;
% Distance at which to fail the episode
envConstants.XThreshold = 2.4;
% Reward each time step the cart-pole is balanced
envConstants.RewardForNotFalling = 1;
% Penalty when the cart-pole fails to balance
envConstants.PenaltyForFalling = -5;

Create an anonymous function handle to the custom step function, passing envConstants as an
additional input argument. Because envConstants is available at the time that StepHandle is
created, the function handle includes those values. The values persist within the function handle even
if you clear the variables.

StepHandle = @(Action,LoggedSignals) myStepFunction2(Action,LoggedSignals,envConstants);

Use the same reset function, specifying it as a function handle rather than by using its name.

ResetHandle = @() myResetFunction;

Create the environment using the custom function handles.

env2 = rlFunctionEnv(ObservationInfo,ActionInfo,StepHandle,ResetHandle);

Validate Custom Functions

Before you train an agent in your environment, the best practice is to validate the behavior of your
custom functions. To do so, you can initialize your environment using the reset function and run one
simulation step using the step function. For reproducibility, set the random generator seed before
validation.

Validate the environment created using function names.

rng(0);
InitialObs = reset(env)

InitialObs = 4×1

         0
         0
    0.0315
         0
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[NextObs,Reward,IsDone,LoggedSignals] = step(env,10);
NextObs

NextObs = 4×1

         0
    0.1947
    0.0315
   -0.2826

Validate the environment created using function handles.

rng(0);
InitialObs2 = reset(env2)

InitialObs2 = 4×1

         0
         0
    0.0315
         0

[NextObs2,Reward2,IsDone2,LoggedSignals2] = step(env2,10);
NextObs2

NextObs2 = 4×1

         0
    0.1947
    0.0315
   -0.2826

Both environments initialize and simulate successfully, producing the same state values in NextObs.

See Also
rlFunctionEnv

More About
• “Create MATLAB Reinforcement Learning Environments” on page 2-2
• “Create Custom MATLAB Environment from Template” on page 2-48
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Create Custom MATLAB Environment from Template
You can define a custom reinforcement learning environment by creating and modifying a template
environment class. You can use a custom template environment to:

• Implement more complex environment dynamics.
• Add custom visualizations to your environment.
• Create an interface to third-party libraries defined in languages such as C++, Java®, or Python®.

For more information, see “External Language Interfaces”.

For more information about creating MATLAB classes, see “User-Defined Classes”.

You can create less complex custom reinforcement learning environments using custom functions, as
described in “Create MATLAB Environment Using Custom Functions” on page 2-41.

Create Template Class
To define your custom environment, first create the template class file, specifying the name of the
class. For this example, name the class MyEnvironment.

rlCreateEnvTemplate("MyEnvironment")

The software creates and opens the template class file. The template class is a subclass of the
rl.env.MATLABEnvironment abstract class, as shown in the class definition at the start of the
template file. This abstract class is the same one used by the other MATLAB reinforcement learning
environment objects.

classdef MyEnvironment < rl.env.MATLABEnvironment

By default, the template class implements a simple cart-pole balancing model similar to the cart-pole
predefined environments described in “Load Predefined Control System Environments” on page 2-23.

To define your environment dynamics modify the template class, specify the following:

• Environment properties
• Required environment methods
• Optional environment methods

Environment Properties
In the properties section of the template, specify any parameters necessary for creating and
simulating the environment. These parameters can include:

• Physical constants — The sample environment defines the acceleration due to gravity (Gravity).
• Environment geometry — The sample environment defines the cart and pole masses (CartMass

and PoleMass) and the half-length of the pole (HalfPoleLength).
• Environment constraints — The sample environment defines the pole angle and cart distance

thresholds (AngleThreshold and DisplacementThreshold). The environment uses these
values to detect when a training episode is finished.

• Variables required for evaluating the environment — The sample environment defines the state
vector (State) and a flag for indicating when an episode is finished (IsDone).
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• Constants for defining the actions or observation spaces — The sample environment defines the
maximum force for the action space (MaxForce).

• Constants for calculating the reward signal — The sample environment defines the constants
RewardForNotFalling and PenaltyForFalling.

properties
    % Specify and initialize the necessary properties of the environment  
    % Acceleration due to gravity in m/s^2
    Gravity = 9.8
    
    % Mass of the cart
    CartMass = 1.0
    
    % Mass of the pole
    PoleMass = 0.1
    
    % Half the length of the pole
    HalfPoleLength = 0.5
    
    % Max force the input can apply
    MaxForce = 10
           
    % Sample time
    Ts = 0.02
    
    % Angle at which to fail the episode (radians)
    AngleThreshold = 12 * pi/180
        
    % Distance at which to fail the episode
    DisplacementThreshold = 2.4
        
    % Reward each time step the cart-pole is balanced
    RewardForNotFalling = 1
    
    % Penalty when the cart-pole fails to balance
    PenaltyForFalling = -10 
end
    
properties
    % Initialize system state [x,dx,theta,dtheta]'
    State = zeros(4,1)
end

properties(Access = protected)
    % Initialize internal flag to indicate episode termination
    IsDone = false        
end

Required Functions
A reinforcement learning environment requires the following functions to be defined. The
getObservationInfo, getActionInfo, sim, and validateEnvironment functions are already
defined in the base abstract class. To create your environment, you must define the constructor,
reset, and step functions.

Function Description
getObservationInfo Return information about the environment observations
getActionInfo Return information about the environment actions
sim Simulate the environment with an agent
validateEnvironment Validate the environment by calling the reset function and

simulating the environment for one time step using step
reset Initialize the environment state and clean up any visualization
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Function Description
step Apply an action, simulate the environment for one step, and

output the observations and rewards; also, set a flag
indicating whether the episode is complete

Constructor function A function with the same name as the class that creates an
instance of the class

Sample Constructor Function

The sample cart-pole constructor function creates the environment by:

• Defining the action and observation specifications. For more information about creating these
specifications, see rlNumericSpec and rlFiniteSetSpec.

• Calling the constructor of the base abstract class.
function this = MyEnvironment()
    % Initialize observation settings
    ObservationInfo = rlNumericSpec([4 1]);
    ObservationInfo.Name = 'CartPole States';
    ObservationInfo.Description = 'x, dx, theta, dtheta';

    % Initialize action settings   
    ActionInfo = rlFiniteSetSpec([-1 1]);
    ActionInfo.Name = 'CartPole Action';

    % The following line implements built-in functions of the RL environment
    this = this@rl.env.MATLABEnvironment(ObservationInfo,ActionInfo);

    % Initialize property values and precompute necessary values
    updateActionInfo(this);
end

This sample constructor function does not include any input arguments. However, you can add input
arguments for your custom constructor.

Sample reset Function

The sample cart-pole reset function sets the initial condition of the model and returns the initial
values of the observations. It also generates a notification that the environment has been updated by
calling the envUpdatedCallback function, which is useful for updating the environment
visualization.

% Reset environment to initial state and return initial observation
function InitialObservation = reset(this)
    % Theta (+- .05 rad)
    T0 = 2 * 0.05 * rand - 0.05;  
    % Thetadot
    Td0 = 0;
    % X 
    X0 = 0;
    % Xdot
    Xd0 = 0;

    InitialObservation = [X0;Xd0;T0;Td0];
    this.State = InitialObservation;

    % (Optional) Use notifyEnvUpdated to signal that the 
    % environment is updated (for example, to update the visualization)
    notifyEnvUpdated(this);
end
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Sample step Function

The sample cart-pole step function:

• Processes the input action.
• Evaluates the environment dynamic equations for one time step.
• Computes and returns the updated observations.
• Computes and returns the reward signal.
• Checks if the episode is complete and returns the IsDone signal as appropriate.
• Generates a notification that the environment has been updated.

function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)
    LoggedSignals = [];

    % Get action
    Force = getForce(this,Action);            

    % Unpack state vector
    XDot = this.State(2);
    Theta = this.State(3);
    ThetaDot = this.State(4);

    % Cache to avoid recomputation
    CosTheta = cos(Theta);
    SinTheta = sin(Theta);            
    SystemMass = this.CartMass + this.PoleMass;
    temp = (Force + this.PoleMass*this.HalfPoleLength*ThetaDot^2*SinTheta)...
        /SystemMass;

    % Apply motion equations            
    ThetaDotDot = (this.Gravity*SinTheta - CosTheta*temp)...
        / (this.HalfPoleLength*(4.0/3.0 - this.PoleMass*CosTheta*CosTheta/SystemMass));
    XDotDot  = temp - this.PoleMass*this.HalfPoleLength*ThetaDotDot*CosTheta/SystemMass;

    % Euler integration
    Observation = this.State + this.Ts.*[XDot;XDotDot;ThetaDot;ThetaDotDot];

    % Update system states
    this.State = Observation;

    % Check terminal condition
    X = Observation(1);
    Theta = Observation(3);
    IsDone = abs(X) > this.DisplacementThreshold || abs(Theta) > this.AngleThreshold;
    this.IsDone = IsDone;

    % Get reward
    Reward = getReward(this);

    % (Optional) Use notifyEnvUpdated to signal that the 
    % environment has been updated (for example, to update the visualization)
    notifyEnvUpdated(this);
end

Optional Functions
You can define any other functions in your template class as required. For example, you can create
helper functions that are called by either step or reset. The cart-pole template model implements a
getReward function for computing the reward at each time step.

function Reward = getReward(this)
    if ~this.IsDone
        Reward = this.RewardForNotFalling;
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    else
        Reward = this.PenaltyForFalling;
    end          
end

Environment Visualization
You can add a visualization to your custom environment by implementing the plot function. In the
plot function:

• Create a figure or an instance of a visualizer class of your own implementation. For this example,
you create a figure and store a handle to the figure within the environment object.

• Call the envUpdatedCallback function.

function plot(this)
    % Initiate the visualization
    this.Figure = figure('Visible','on','HandleVisibility','off');
    ha = gca(this.Figure);
    ha.XLimMode = 'manual';
    ha.YLimMode = 'manual';
    ha.XLim = [-3 3];
    ha.YLim = [-1 2];
    hold(ha,'on');
    % Update the visualization
    envUpdatedCallback(this)
end

For this example, store the handle to the figure as a protected property of the environment object.

properties(Access = protected)
    % Initialize internal flag to indicate episode termination
    IsDone = false 

    % Handle to figure
    Figure
end

In the envUpdatedCallback, plot the visualization to the figure or use your custom visualizer
object. For example, check if the figure handle has been set. If it has, then plot the visualization.
function envUpdatedCallback(this)
    if ~isempty(this.Figure) && isvalid(this.Figure)
        % Set visualization figure as the current figure
        ha = gca(this.Figure);

        % Extract the cart position and pole angle
        x = this.State(1);
        theta = this.State(3);

        cartplot = findobj(ha,'Tag','cartplot');
        poleplot = findobj(ha,'Tag','poleplot');
        if isempty(cartplot) || ~isvalid(cartplot) ...
                || isempty(poleplot) || ~isvalid(poleplot)
            % Initialize the cart plot
            cartpoly = polyshape([-0.25 -0.25 0.25 0.25],[-0.125 0.125 0.125 -0.125]);
            cartpoly = translate(cartpoly,[x 0]);
            cartplot = plot(ha,cartpoly,'FaceColor',[0.8500 0.3250 0.0980]);
            cartplot.Tag = 'cartplot';

            % Initialize the pole plot
            L = this.HalfPoleLength*2;
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            polepoly = polyshape([-0.1 -0.1 0.1 0.1],[0 L L 0]);
            polepoly = translate(polepoly,[x,0]);
            polepoly = rotate(polepoly,rad2deg(theta),[x,0]);
            poleplot = plot(ha,polepoly,'FaceColor',[0 0.4470 0.7410]);
            poleplot.Tag = 'poleplot';
        else
            cartpoly = cartplot.Shape;
            polepoly = poleplot.Shape;
        end

        % Compute the new cart and pole position
        [cartposx,~] = centroid(cartpoly);
        [poleposx,poleposy] = centroid(polepoly);
        dx = x - cartposx;
        dtheta = theta - atan2(cartposx-poleposx,poleposy-0.25/2);
        cartpoly = translate(cartpoly,[dx,0]);
        polepoly = translate(polepoly,[dx,0]);
        polepoly = rotate(polepoly,rad2deg(dtheta),[x,0.25/2]);

        % Update the cart and pole positions on the plot
        cartplot.Shape = cartpoly;
        poleplot.Shape = polepoly;

        % Refresh rendering in the figure window
        drawnow();
    end
end

The environment calls the envUpdatedCallback function, and therefore updates the visualization,
whenever the environment is updated.

Create Custom Environment
After you define your custom environment class, create an instance of it in the MATLAB workspace.
At the command line, type the following.

env = MyEnvironment;

If your constructor has input arguments, specify them after the class name. For example,
MyEnvironment(arg1,arg2).

After you create your environment, the best practice is to validate the environment dynamics. To do
so, use the validateEnvironment function, which prints an error to the command window if your
environment implementation has any issues.

validateEnvironment(env)

After validating the environment object, you can use it to train a reinforcement learning agent. For
more information on training agents, see “Train Reinforcement Learning Agents” on page 5-3.

See Also
rlCreateEnvTemplate | train

More About
• “Create MATLAB Reinforcement Learning Environments” on page 2-2
• “Create MATLAB Environment Using Custom Functions” on page 2-41
• “Define Reward Signals” on page 2-14
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Water Tank Reinforcement Learning Environment Model
This example shows how to create a water tank reinforcement learning Simulink® environment that
contains an RL Agent block in the place of a controller for the water level in a tank. To simulate this
environment, you must create an agent and specify that agent in the RL Agent block. For an example
that trains an agent using this environment, see “Create Simulink Environment and Train Agent” on
page 1-20.

mdl = 'rlwatertank';
open_system(mdl)

This model already contains an RL Agent block, which connects to the following signals:

• Scalar action output signal
• Vector of observation input signals
• Scalar reward input signal
• Logical input signal for stopping the simulation

Actions and Observations

A reinforcement learning environment receives action signals from the agent and generates
observation signals in response to these actions. To create and train an agent, you must create action
and observation specification objects.

The action signal for this environment is the flow rate control signal that is sent to the plant. To
create a specification object for this continuous action signal, use the rlNumericSpec function.

actionInfo = rlNumericSpec([1 1]);
actionInfo.Name = 'flow';
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If the action signal takes one of a discrete set of possible values, create the specification using the
rlFiniteSetSpec function.

For this environment, there are three observation signals sent to the agent, specified as a vector
signal. The observation vector is ∫e dt e h T , where:

• h is the height of the water in the tank.
• e = r − h, where r is the reference value for the water height.

Compute the observation signals in the generate observations subsystem.

open_system([mdl '/generate observations'])

Create a three-element vector of observation specifications. Specify a lower bound of 0 for the water
height, leaving the other observation signals unbounded.

observationInfo = rlNumericSpec([3 1],...
    'LowerLimit',[-inf -inf 0  ]',...
    'UpperLimit',[ inf  inf inf]');
observationInfo.Name = 'observations';
observationInfo.Description = 'integrated error, error, and measured height';

If the actions or observations are represented by bus signals, create specifications using the
bus2RLSpec function.

Reward Signal

Construct a scalar reward signal. For this example, specify the following reward.

reward = 10 e < 0 . 1 − 1 e ≥ 0 . 1 − 100 h ≤ 0 h ≥ 20

The reward is positive when the error is below 0.1 and negative otherwise. Also, there is a large
reward penalty when the water height is outside the 0 to 20 range.

Construct this reward in the calculate reward subsystem.

open_system([mdl '/calculate reward'])
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Stop Signal

To terminate training episodes and simulations, specify a logical signal to the isdone input port of
the block. For this example, terminate the episode if h ≤ 0 or h ≥ 20.

Compute this signal in the stop simulation subsystem.

open_system([mdl '/stop simulation'])

Create Environment Object

Create an environment object for the Simulink model.

env = rlSimulinkEnv(mdl,[mdl '/RL Agent'],observationInfo,actionInfo);

Reset Function

You can also create a custom reset function that randomizes parameters, variables, or states of the
model. In this example, the reset function randomizes the reference signal and the initial water
height and sets the corresponding block parameters.

env.ResetFcn = @(in)localResetFcn(in);

Local Function

function in = localResetFcn(in)

% Randomize reference signal
blk = sprintf('rlwatertank/Desired \nWater Level');
h = 3*randn + 10;
while h <= 0 || h >= 20
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    h = 3*randn + 10;
end
in = setBlockParameter(in,blk,'Value',num2str(h));

% Randomize initial height
h = 3*randn + 10;
while h <= 0 || h >= 20
    h = 3*randn + 10;
end
blk = 'rlwatertank/Water-Tank System/H';
in = setBlockParameter(in,blk,'InitialCondition',num2str(h));

end

See Also
rlSimulinkEnv

More About
• “Create Simulink Reinforcement Learning Environments” on page 2-8
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Create Agents

• “Reinforcement Learning Agents” on page 3-2
• “Create Agents Using Reinforcement Learning Designer” on page 3-7
• “Q-Learning Agents” on page 3-15
• “SARSA Agents” on page 3-18
• “Deep Q-Network Agents” on page 3-21
• “Policy Gradient Agents” on page 3-25
• “Deep Deterministic Policy Gradient Agents” on page 3-29
• “Twin-Delayed Deep Deterministic Policy Gradient Agents” on page 3-33
• “Actor-Critic Agents” on page 3-38
• “Proximal Policy Optimization Agents” on page 3-42
• “Trust Region Policy Optimization Agents” on page 3-48
• “Soft Actor-Critic Agents” on page 3-55
• “Model-Based Policy Optimization Agents” on page 3-60
• “Create Custom Reinforcement Learning Agents” on page 3-66
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Reinforcement Learning Agents
The goal of reinforcement learning is to train an agent to complete a task within an uncertain
environment. At each time interval, the agent receives observations and a reward from the
environment and sends an action to the environment. The reward is a measure of how successful the
previous action (taken from the previous state) was with respect to completing the task goal.

The agent contains two components: a policy and a learning algorithm.

• The policy is a mapping that selects actions based on the observations from the environment.
Typically, the policy is a function approximator with tunable parameters, such as a deep neural
network.

• The learning algorithm continuously updates the policy parameters based on the actions,
observations, and rewards. The goal of the learning algorithm is to find an optimal policy that
maximizes the expected cumulative long-term reward received during the task.

Depending on the learning algorithm, an agent maintains one or more parameterized function
approximators for training the policy. Approximators can be used in two ways.

• Critics — For a given observation and action, a critic returns the predicted discounted value of
the cumulative long-term reward.

• Actor — For a given observation, an actor returns as output the action that (often) maximizes the
predicted discounted cumulative long-term reward.

Agents that use only critics to select their actions rely on an indirect policy representation. These
agents are also referred to as value-based, and they use an approximator to represent a value
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function or Q-value function. In general, these agents work better with discrete action spaces but can
become computationally expensive for continuous action spaces.

Agents that use only actors to select their actions rely on a direct policy representation. These agents
are also referred to as policy-based. The policy can be either deterministic or stochastic. In general,
these agents are simpler and can handle continuous action spaces, though the training algorithm can
be sensitive to noisy measurement and can converge on local minima.

Agents that use both an actor and a critic are referred to as actor-critic agents. In these agents,
during training, the actor learns the best action to take using feedback from the critic (instead of
using the reward directly). At the same time, the critic learns the value function from the rewards so
that it can properly criticize the actor. In general, these agents can handle both discrete and
continuous action spaces.

Built-In Agents
Reinforcement Learning Toolbox software provides the following built-in agents. You can train these
agents in environments with either continuous or discrete observation spaces and the following
action spaces.

The following tables summarize the types, action spaces, and used approximators for all the built-in
agents. For each agent, the observation space can be discrete, continuous or mixed.

Built-In Agents: Type and Action Space

Agent Type Action Space
“Q-Learning Agents” on page 3-15 (Q) Value-Based Discrete
“Deep Q-Network Agents” on page 3-
21(DQN)

Value-Based Discrete

“SARSA Agents” on page 3-18 Value-Based Discrete
“Policy Gradient Agents” on page 3-25
(PG)

Policy-Based Discrete or continuous

“Actor-Critic Agents” on page 3-38
(AC)

Actor-Critic Discrete or continuous

“Proximal Policy Optimization Agents”
on page 3-42 (PPO)

Actor-Critic Discrete or continuous

“Trust Region Policy Optimization
Agents” on page 3-48

Actor-Critic Discrete or continuous

“Deep Deterministic Policy Gradient
Agents” on page 3-29 (DDPG)

Actor-Critic Continuous

“Twin-Delayed Deep Deterministic
Policy Gradient Agents” on page 3-33
(TD3)

Actor-Critic Continuous

“Soft Actor-Critic Agents” on page 3-
55 (SAC)

Actor-Critic Continuous
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Built-In Agents: Approximators Used by Each Agent

Approximator Q, DQN,
SARSA

PG AC, PPO,
TRPO

SAC DDPG, TD3

Value function critic V(S), which
you can create using

rlValueFunction

 X (if
baseline is
used)

X
  

Q-value function critic Q(S,A),
which you can create using

rlQValueFunction
X

  
X X

Multi-output Q-value function
critic Q(S), for discrete action
spaces, which you can create
using

rlVectorQValueFunction

X

    

Deterministic policy actor π(S),
which you can create using

rlContinuousDeterministicA
ctor

    

X

Stochastic (Multinoulli) policy
actor π(S), for discrete action
spaces, which you can create
using

rlDiscreteCategoricalActor

 

X X

  

Stochastic (Gaussian) policy actor
π(S), for continuous action spaces,
which you can create using

rlContinuousGaussianActor

 

X X X

 

Agent with default networks — All agents except Q-learning and SARSA agents support default
networks for actors and critics. You can create an agent with a default actor and critic based on the
observation and action specifications from the environment. To do so, at the MATLAB command line,
perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options by creating an options object set for the specific agent.
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5 Create the agent using the corresponding agent creation function. The resulting agent contains
the appropriate actor and critics listed in the table above. The actor and critic use default agent-
specific deep neural networks as internal approximators.

For more information on creating actor and critic function approximators, see “Create Policies and
Value Functions” on page 4-2.

You can use the Reinforcement Learning Designer app to import an existing environment and
interactively design DQN, DDPG, PPO, or TD3 agents. The app allows you to train and simulate the
agent within your environment, analyze the simulation results, refine the agent parameters, and
export the agent to the MATLAB workspace for further use and deployment. For more information,
see “Create Agents Using Reinforcement Learning Designer” on page 3-7.

Choose Agent Type
When choosing an agent, a best practice is to start with a simpler (and faster to train) algorithm that
is compatible with your action and observation spaces. You can then try progressively more
complicated algorithms if the simpler ones do not perform as desired.

• Discrete action and observation spaces — For environments with discrete action and
observation spaces, the Q-learning and SARSA agents are the simplest compatible agent, followed
by DQN, PPO, and TRPO.

• Discrete action space and continuous observation space — For environments with a discrete
action space and a continuous observation space, DQN is the simplest compatible agent followed
by PPO and then TRPO.

• Continuous action space — For environments with both a continuous action and observation
space, DDPG is the simplest compatible agent, followed by TD3, PPO, and SAC, which are then
followed by TRPO. For such environments, try DDPG first. In general:

• TD3 is an improved, more complex version of DDPG.
• PPO has more stable updates but requires more training.
• SAC is an improved, more complex version of DDPG that generates stochastic policies.
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• TRPO is a more complex version of PPO that is more robust for deterministic environments
with fewer observations.

Model-Based Policy Optimization
If you are using an off-policy agent (DQN, DDPG, TD3, SAC), you can consider using model-based
policy optimization (MBPO) agent. to improve your training sample efficiency. An MBPO agent
contains an internal model of the environment, which it uses to generate additional experiences
without interacting with the environment.

During training, the MBPO agent generates real experiences by interacting with the environment.
These experiences are used to train the internal environment model, which is used to generate
additional experiences. The training algorithm then uses both the real and generated experiences to
update the agent policy.

An MBPO agent can be more sample efficient than model-free agents because the model can generate
large sets of diverse experiences. However, MBPO agents require much more computational time
than model-free agents, because they must train the environment model and generate samples in
addition to training the base agent.

For more information, see “Model-Based Policy Optimization Agents” on page 3-60.

Custom Agents
You can also train policies using other learning algorithms by creating a custom agent. To do so, you
create a subclass of a custom agent class, and define the agent behavior using a set of required and
optional methods. For more information, see “Create Custom Reinforcement Learning Agents” on
page 3-66.

See Also
rlACAgent | rlDDPGAgent | rlDQNAgent | rlPGAgent | rlPPOAgent | rlQAgent | rlSACAgent |
rlSARSAAgent | rlTD3Agent | rlTRPOAgent | rlMBPOAgent

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Agents Using Reinforcement Learning Designer” on page 3-7
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Create Agents Using Reinforcement Learning Designer
The Reinforcement Learning Designer app supports the following types of agents.

• “Deep Q-Network Agents” on page 3-21 (DQN)
• “Deep Deterministic Policy Gradient Agents” on page 3-29 (DDPG)
• “Twin-Delayed Deep Deterministic Policy Gradient Agents” on page 3-33 (TD3)
• “Proximal Policy Optimization Agents” on page 3-42 (PPO)
• “Trust Region Policy Optimization Agents” on page 3-48 (TRPO)
• “Soft Actor-Critic Agents” on page 3-55 (SAC)

To train an agent using Reinforcement Learning Designer, you must first create or import an
environment. For more information, see “Create MATLAB Environments for Reinforcement Learning
Designer” on page 2-5 and “Create Simulink Environments for Reinforcement Learning Designer” on
page 2-11.

Create Agent
To create an agent, on the Reinforcement Learning tab, in the Agent section, click New.

In the Create agent dialog box, specify the following information.
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• Agent name — Specify the name of your agent.
• Environment — Select an environment that you previously created or imported.
• Compatible algorithm — Select an agent training algorithm. This list contains only algorithms

that are compatible with the environment you select.

The Reinforcement Learning Designer app creates agents with actors and critics based on default
deep neural network. You can specify the following options for the default networks.

• Number of hidden units — Specify number of units in each fully-connected or LSTM layer of the
actor and critic networks.

• Use recurrent neural network — Select this option to create actor and critic with recurrent
neural networks that contain an LSTM layer.

To create the agent, click OK.

The app adds the new default agent to the Agents pane and opens a document for editing the agent
options.
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Import Agent
You can also import an agent from the MATLAB workspace into Reinforcement Learning Designer.
To do so, on the Reinforcement Learning tab, click Import. Then, under Select Agent, select the
agent to import.

The app adds the new imported agent to the Agents pane and opens a document for editing the
agent options.

Edit Agent Options
In Reinforcement Learning Designer, you can edit agent options in the corresponding agent
document.

 Create Agents Using Reinforcement Learning Designer

3-9



You can edit the following options for each agent.

• Agent Options — Agent options, such as the sample time and discount factor. Specify these
options for all supported agent types.

• Exploration Model — Exploration model options. PPO agents do not have an exploration model.
• Target Policy Smoothing Model — Options for target policy smoothing, which is supported for

only TD3 agents.

For more information on these options, see the corresponding agent options object.

• rlDQNAgentOptions — DQN agent options
• rlDDPGAgentOptions — DDPG agent options
• rlTD3AgentOptions — TD3 agent options
• rlPPOAgentOptions — PPO agent options

You can import agent options from the MATLAB workspace. To create options for each type of agent,
use one of the preceding objects. You can also import options that you previously exported from the
Reinforcement Learning Designer app

To import the options, on the corresponding Agent tab, click Import. Then, under Options, select an
options object. The app lists only compatible options objects from the MATLAB workspace.
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The app configures the agent options to match those In the selected options object.

Edit Actor and Critic
You can edit the properties of the actor and critic of each agent.

• DQN agents have just a critic network.
• DDPG and PPO agents have an actor and a critic.
• TD3 agents have an actor and two critics. When you modify the critic options for a TD3 agent, the

changes apply to both critics.

You can also import actors and critics from the MATLAB workspace. For more information on creating
actors and critics, see “Create Policies and Value Functions” on page 4-2. You can also import
actors and critics that you previously exported from the Reinforcement Learning Designer app.

To import an actor or critic, on the corresponding Agent tab, click Import. Then, under either Actor
or Critic, select an actor or critic object with action and observation specifications that are
compatible with the specifications of the agent.
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The app replaces the existing actor or critic in the agent with the selected one. If you import a critic
for a TD3 agent, the app replaces the network for both critics.

Modify Deep Neural Networks
To use a nondefault deep neural network for an actor or critic, you must import the network from the
MATLAB workspace. One common strategy is to export the default deep neural network, modify it
using the Deep Network Designer app, and then import it back into Reinforcement Learning
Designer. For more information on creating deep neural networks for actors and critics, see “Create
Policies and Value Functions” on page 4-2.

To import a deep neural network, on the corresponding Agent tab, click Import. Then, under either
Actor Neural Network or Critic Neural Network, select a network with input and output layers
that are compatible with the observation and action specifications of the agent.
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The app replaces the deep neural network in the corresponding actor or agent. If you import a critic
network for a TD3 agent, the app replaces the network for both critics.

Export Agents and Agent Components
For a given agent, you can export any of the following to the MATLAB workspace.

• Agent
• Agent options
• Actor or critic
• Deep neural network in the actor or critic

To export an agent or agent component, on the corresponding Agent tab, click Export. Then, select
the item to export.
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The app saves a copy of the agent or agent component in the MATLAB workspace.

See Also
Reinforcement Learning Designer | analyzeNetwork

Related Examples
• “Reinforcement Learning Agents” on page 3-2
• “Create MATLAB Environments for Reinforcement Learning Designer” on page 2-5
• “Create Simulink Environments for Reinforcement Learning Designer” on page 2-11
• “Design and Train Agent Using Reinforcement Learning Designer” on page 5-12
• “Deep Q-Network Agents” on page 3-21
• “Deep Deterministic Policy Gradient Agents” on page 3-29
• “Twin-Delayed Deep Deterministic Policy Gradient Agents” on page 3-33
• “Proximal Policy Optimization Agents” on page 3-42

3 Create Agents

3-14



Q-Learning Agents
The Q-learning algorithm is a model-free, online, off-policy reinforcement learning method. A Q-
learning agent is a value-based reinforcement learning agent that trains a critic to estimate the
return or future rewards. For a given observation, the agent selects and outputs the action for which
the estimated return is greatest.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

Q-learning agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous or discrete Discrete

Q agents use the following critic.

Critic Actor
Q-value function critic Q(S,A), which you create
using rlQValueFunction or
rlVectorQValueFunction

Q agents do not use an actor

During training, the agent explores the action space using epsilon-greedy exploration. During each
control interval the agent selects a random action with probability ϵ, otherwise it selects the action
for which the value function greatest with probability 1–ϵ.

Critic Function Approximator
To estimate the value function, a Q-learning agent maintains a critic Q(S,A;ϕ), which is a function
approximator with parameters ϕ. The critic takes observation S and action A as inputs and returns
the corresponding expectation of the long-term reward.

For critics that use table-based value functions, the parameters in ϕ are the actual Q(S,A) values in
the table.

For more information on creating critics for value function approximation, see “Create Policies and
Value Functions” on page 4-2.

During training, the agent tunes the parameter values in ϕ. After training, the parameters remain at
their tuned value and the trained value function approximator is stored in critic Q(S,A).

Agent Creation
To create a Q-learning agent:

1 Create a critic using an rlQValueFunction object.
2 Specify agent options using an rlQAgentOptions object.
3 Create the agent using an rlQAgent object.
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Training Algorithm
Q-learning agents use the following training algorithm. To configure the training algorithm, specify
options using an rlQAgentOptions object.

• Initialize the critic Q(S,A;ϕ) with random parameter values in ϕ.
• For each training episode:

1 Get the initial observation S from the environment.
2 Repeat the following for each step of the episode until S is a terminal state.

a For the current observation S, select a random action A with probability ϵ. Otherwise,
select the action for which the critic value function is greatest.

A = argmax
A

Q S, A; ϕ

To specify ϵ and its decay rate, use the EpsilonGreedyExploration option.
b Execute action A. Observe the reward R and next observation S'.
c If S' is a terminal state, set the value function target y to R. Otherwise, set it to

y = R + γmax
A

Q S′, A; ϕ

To set the discount factor γ, use the DiscountFactor option.
d Compute the difference ΔQ between the value function target and the current Q(S,A;ϕ)

value.

ΔQ = y − Q S, A; ϕ
e Update the critic using the learning rate α. Specify the learning rate when you create the

critic by setting the LearnRate option in the rlCriticOptimizerOptions property
within the agent options object.

• For table-based critics, update the corresponding Q(S,A) value in the table.

Q S, A = Q S, A; ϕ + α ⋅ ΔQ
• For all other types of critics, compute the gradients Δϕ of the loss function with

respect to the parameters ϕ. Then, update the parameters based on the computed
gradients. In this case, the loss function is the square of ΔQ.

Δϕ = 1
2 ∇ϕ ΔQ 2

ϕ = ϕ + α ⋅ Δϕ
f Set the observation S to S'.

See Also
rlQAgent | rlQAgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
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• “Create Policies and Value Functions” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-3
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-14
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SARSA Agents
The SARSA algorithm is a model-free, online, on-policy reinforcement learning method. A SARSA
agent is a value-based reinforcement learning agent that trains a critic to estimate the return or
future rewards. For a given observation, the agent selects and outputs the action for which the
estimated return is greatest.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

SARSA agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous or discrete Discrete

SARSA agents use the following critic.

Critic Actor
Q-value function critic Q(S,A), which you create
using rlQValueFunction or
rlVectorQValueFunction

SARSA agents do not use an actor.

During training, the agent explores the action space using epsilon-greedy exploration. During each
control interval the agent selects a random action with probability ϵ, otherwise it selects the action
for which the value function greatest with probability 1–ϵ.

Critic Function Approximator
To estimate the value function, a SARSA agent maintains a critic Q(S,A;ϕ), which is a function
approximator with parameters ϕ. The critic takes observation S and action A as inputs and returns
the corresponding expectation of the long-term reward.

For critics that use table-based value functions, the parameters in ϕ are the actual Q(S,A) values in
the table.

For more information on creating critics for value function approximation, see “Create Policies and
Value Functions” on page 4-2.

During training, the agent tunes the parameter values in ϕ. After training, the parameters remain at
their tuned value and the trained value function approximator is stored in critic Q(S,A).

Agent Creation
To create a SARSA agent:

1 Create a critic using an rlQValueFunction object.
2 Specify agent options using an rlSARSAAgentOptions object.
3 Create the agent using an rlSARSAAgent object.
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Training Algorithm
SARSA agents use the following training algorithm. To configure the training algorithm, specify
options using an rlSARSAAgentOptions object.

• Initialize the critic Q(S,A;ϕ) with random parameter values in ϕ.
• For each training episode:

1 Get the initial observation S from the environment.
2 For the current observation S, select a random action A with probability ϵ. Otherwise, select

the action for which the critic value function is greatest.

A = argmax
A

Q S, A; ϕ

To specify ϵ and its decay rate, use the EpsilonGreedyExploration option.
3 Repeat the following for each step of the episode until S is a terminal state:

a Execute action A0. Observe the reward R and next observation S'.
b For the current observation S', select a random action A' with probability ϵ. Otherwise,

select the action for which the critic value function is greatest.

A′ = argmax
A′

Q S′, A′; ϕ

c If S' is a terminal state, set the value function target y to R. Otherwise, set it to

y = R + γQ S′, A′; ϕ

To set the discount factor γ, use the DiscountFactor option.
d Compute the difference ΔQ between the value function target and the current Q(S,A;ϕ)

value.

ΔQ = y − Q S, A; ϕ
e Update the critic using the learning rate α. Specify the learning rate when you create the

critic by setting the LearnRate option in the rlCriticOptimizerOptions property
within the agent options object.

• For table-based critics, update the corresponding Q(S,A) value in the table.

Q S, A = Q S, A; ϕ + α ⋅ ΔQ
• For all other types of critics, compute the gradients Δϕ of the loss function with

respect to the parameters ϕ. Then, update the parameters based on the computed
gradients. In this case, the loss function is the square of ΔQ.

Δϕ = 1
2 ∇ϕ ΔQ 2

ϕ = ϕ + α ⋅ Δϕ
f Set the observation S to S'.
g Set the action A to A'.

See Also
rlSARSAAgent | rlSARSAAgentOptions
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More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policies and Value Functions” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-3
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-14
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Deep Q-Network Agents
The deep Q-network (DQN) algorithm is a model-free, online, off-policy reinforcement learning
method. A DQN agent is a value-based reinforcement learning agent that trains a critic to estimate
the return or future rewards. DQN is a variant of Q-learning. For more information on Q-learning, see
“Q-Learning Agents” on page 3-15.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

DQN agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous or discrete Discrete

DQN agents use the following critic.

Critic Actor
Q-value function critic Q(S,A), which you create
using rlQValueFunction or
rlVectorQValueFunction

DQN agents do not use an actor.

During training, the agent:

• Updates the critic properties at each time step during learning.
• Explores the action space using epsilon-greedy exploration. During each control interval, the

agent either selects a random action with probability ϵ or selects an action greedily with respect
to the value function with probability 1-ϵ. This greedy action is the action for which the value
function is greatest.

• Stores past experiences using a circular experience buffer. The agent updates the critic based on a
mini-batch of experiences randomly sampled from the buffer.

Critic Function Approximator
To estimate the value function, a DQN agent maintains two function approximators:

• Critic Q(S,A;ϕ) — The critic, with parameters ϕ, takes observation S and action A as inputs and
returns the corresponding expectation of the long-term reward.

• Target critic Qt(S,A;ϕt) — To improve the stability of the optimization, the agent periodically
updates the target critic parameters ϕt using the latest critic parameter values.

Both Q(S,A;ϕ) and Qt(S,A;ϕt) have the same structure and parameterization.

For more information on creating critics for value function approximation, see “Create Policies and
Value Functions” on page 4-2.

During training, the agent tunes the parameter values in ϕ. After training, the parameters remain at
their tuned value and the trained value function approximator is stored in critic Q(S,A).
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Agent Creation
You can create and train DQN agents at the MATLAB command line or using the Reinforcement
Learning Designer app. For more information on creating agents using Reinforcement Learning
Designer, see “Create Agents Using Reinforcement Learning Designer” on page 3-7.

At the command line, you can create a DQN agent with a critic based on the observation and action
specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlDQNAgentOptions object.
5 Create the agent using an rlDQNAgent object.

Alternatively, you can create actor and critic and use these objects to create your agent. In this case,
ensure that the input and output dimensions of the actor and critic match the corresponding action
and observation specifications of the environment.

1 Create a critic using an rlQValueFunction object.
2 Specify agent options using an rlDQNAgentOptions object.
3 Create the agent using an rlDQNAgent object.

DQN agents support critics that use recurrent deep neural networks as functions approximators.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

Training Algorithm
DQN agents use the following training algorithm, in which they update their critic model at each time
step. To configure the training algorithm, specify options using an rlDQNAgentOptions object.

• Initialize the critic Q(s,a;ϕ) with random parameter values ϕ, and initialize the target critic
parameters ϕt with the same values. ϕt = ϕ.

• For each training time step:

1 For the current observation S, select a random action A with probability ϵ. Otherwise, select
the action for which the critic value function is greatest.

A = argmax
A

Q S, A; ϕ

To specify ϵ and its decay rate, use the EpsilonGreedyExploration option.
2 Execute action A. Observe the reward R and next observation S'.
3 Store the experience (S,A,R,S') in the experience buffer.
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4 Sample a random mini-batch of M experiences (Si,Ai,Ri,S'i) from the experience buffer. To
specify M, use the MiniBatchSize option.

5 If S'i is a terminal state, set the value function target yi to Ri. Otherwise, set it to

Amax = argmax
A′

Q Si′, A′; ϕ

yi = Ri + γQt Si′, Amax; ϕt
double DQN

yi = Ri + γmax
A′

Qt Si′, A′; ϕt DQN

To set the discount factor γ, use the DiscountFactor option. To use double DQN, set the
UseDoubleDQN option to true.

6 Update the critic parameters by one-step minimization of the loss L across all sampled
experiences.

L = 1
M ∑

i = 1

M
yi− Q Si, Ai; ϕ 2

7 Update the target critic parameters depending on the target update method. For more
information, see “Target Update Methods” on page 3-23.

8 Update the probability threshold ϵ for selecting a random action based on the decay rate you
specify in the EpsilonGreedyExploration option.

Target Update Methods
DQN agents update their target critic parameters using one of the following target update methods.

• Smoothing — Update the target parameters at every time step using smoothing factor τ. To
specify the smoothing factor, use the TargetSmoothFactor option.

ϕt = τϕ + 1− τ ϕt

• Periodic — Update the target parameters periodically without smoothing (TargetSmoothFactor
= 1). To specify the update period, use the TargetUpdateFrequency parameter.

• Periodic Smoothing — Update the target parameters periodically with smoothing.

To configure the target update method, create a rlDQNAgentOptions object, and set the
TargetUpdateFrequency and TargetSmoothFactor parameters as shown in the following table.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing (default) 1 Less than 1
Periodic Greater than 1 1
Periodic smoothing Greater than 1 Less than 1

References
[1] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. “Playing Atari with Deep Reinforcement Learning.”
ArXiv:1312.5602 [Cs], December 19, 2013. https://arxiv.org/abs/1312.5602.
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See Also
rlDQNAgent | rlDQNAgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policies and Value Functions” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-3
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Policy Gradient Agents
The policy gradient (PG) algorithm is a model-free, online, on-policy reinforcement learning method.
A PG agent is a policy-based reinforcement learning agent that uses the REINFORCE algorithm to
searches for an optimal policy that maximizes the expected cumulative long-term reward.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

PG agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Discrete or continuous Discrete or continuous

PG agents use the following actor and critic.

Critic (if a baseline is used) Actor
Value function critic V(S), which you create using
rlValueFunction

Stochastic policy actor π(S), which you create
using rlDiscreteCategoricalActor (for a for
discrete action space) or
rlContinuousGaussianActor (for a
continuous action space).

During training, a PG agent:

• Estimates probabilities of taking each action in the action space and randomly selects actions
based on the probability distribution.

• Completes a full training episode using the current policy before learning from the experience and
updating the policy parameters.

If the UseDeterministicExploitation option in rlPGAgentOptions is set to true the action
with maximum likelihood is always used in sim and generatePolicyFunction. This causes the
simulated agent and the generated policy to behave deterministically.

Actor and Critic Function Approximators
PG agents represent the policy using an actor function approximator π(A|S;θ) with parameters θ. The
actor outputs the conditional probability of taking each action A when in state S as one of the
following:

• Discrete action space — The probability of taking each discrete action. The sum of these
probabilities across all actions is 1.

• Continuous action space — The mean and standard deviation of the Gaussian probability
distribution for each continuous action.

To reduce the variance during gradient estimation, PG agents can use a baseline value function,
which is estimated using a critic function approximator, V(S;ϕ) with parameters ϕ. The critic
computes the value function for a given observation state.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.
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During training, the agent tunes the parameter values in θ. After training, the parameters remain at
their tuned value and the trained actor function approximator is stored in π(A|S).

Agent Creation
You can create a PG agent with default actor and critic based on the observation and action
specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlPGAgentOptions object.
5 Create the agent using an rlPGAgent object.

Alternatively, you can create actor and critic and use these objects to create your agent. In this case,
ensure that the input and output dimensions of the actor and critic match the corresponding action
and observation specifications of the environment.

1 Create an actor using an rlDiscreteCategoricalActor (for a for discrete action space) or
rlContinuousGaussianActor (for a continuous action space) object.

2 If you are using a baseline function, create a critic using an rlValueFunction object.
3 Specify agent options using the rlPGAgentOptions object.
4 Create the agent using an rlPGAgent object.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

Training Algorithm
PG agents use the REINFORCE (Monte Carlo policy gradient) algorithm either with or without a
baseline. To configure the training algorithm, specify options using an rlPGAgentOptions object.

REINFORCE Algorithm

1 Initialize the actor π(S;θ) with random parameter values in θ.
2 For each training episode, generate the episode experience by following actor policy π(S). To

select an action, the actor generates probabilities for each action in the action space, then the
agent randomly selects an action based on the probability distribution. The agent takes actions
until it reaches the terminal state ST. The episode experience consists of the sequence

S0, A0, R1, S1, …, ST − 1, AT − 1, RT, ST

Here, St is a state observation, At is an action taken from that state, St+1 is the next state, and Rt
+1 is the reward received for moving from St to St+1.

3 For each state in the episode sequence, that is, for t = 1, 2, …, T-1, calculate the return Gt, which
is the discounted future reward.
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Gt = ∑
k = t

T
γk− tRk

4 Accumulate the gradients for the actor network by following the policy gradient to maximize the
expected discounted reward. If the EntropyLossWeight option is greater than zero, then
additional gradients are accumulated to minimize the entropy loss function.

dθ = ∑
t = 1

T − 1
Gt∇θlnπ St; θ

5 Update the actor parameters by applying the gradients.

θ = θ + αdθ

Here, α is the learning rate of the actor. Specify the learning rate when you create the actor by
setting the LearnRate option in the rlActorOptimizerOptions property within the agent
options object. For simplicity, this step shows a gradient update using basic stochastic gradient
descent. The actual gradient update method depends on the optimizer you specify using in the
rlOptimizerOptions object assigned to the rlActorOptimizerOptions property.

6 Repeat steps 2 through 5 for each training episode until training is complete.

REINFORCE with Baseline Algorithm

1 Initialize the actor π(S;θ) with random parameter values in θ.
2 Initialize the critic V(S;ϕ) with random parameter values in ϕ.
3 For each training episode, generate the episode experience by following the actor policy π(S).

The episode experience consists of the sequence

S0, A0, R1, S1, …, ST − 1, AT − 1, RT, ST

4 For t = 1, 2, …, T:

• Calculate the return Gt, which is the discounted future reward.

Gt = ∑
k = t

T
γk− tRk

• Compute the advantage function δt using the baseline value function estimate from the critic.

δt = Gt− V St; ϕ
5 Accumulate the gradients for the critic network.

dϕ = ∑
t = 1

T − 1
δt∇ϕV St; ϕ

6 Accumulate the gradients for the actor network. If the EntropyLossWeight option is greater
than zero, then additional gradients are accumulated to minimize the entropy loss function.

dθ = ∑
t = 1

T − 1
δt∇θlnπ St; θ

7 Update the critic parameters ϕ.

ϕ = ϕ + βdϕ
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Here, β is the learning rate of the critic. Specify the learning rate when you create the critic by
setting the LearnRate option in the rlCriticOptimizerOptions property within the agent
options object.

8 Update the actor parameters θ.

θ = θ + αdθ
9 Repeat steps 3 through 8 for each training episode until training is complete.

For simplicity, the actor and critic updates in this algorithm show a gradient update using basic
stochastic gradient descent. The actual gradient update method depends on the optimizer you specify
using in the rlOptimizerOptions object assigned to the rlCriticOptimizerOptions property.

References
[1] Williams, Ronald J. “Simple Statistical Gradient-Following Algorithms for Connectionist

Reinforcement Learning.” Machine Learning 8, no. 3–4 (May 1992): 229–56. https://doi.org/
10.1007/BF00992696.

See Also
rlPGAgent | rlPGAgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policies and Value Functions” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-3
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Deep Deterministic Policy Gradient Agents
The deep deterministic policy gradient (DDPG) algorithm is a model-free, online, off-policy
reinforcement learning method. A DDPG agent is an actor-critic reinforcement learning agent that
searches for an optimal policy that maximizes the expected cumulative long-term reward.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

DDPG agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous or discrete Continuous

DDPG agents use the following actor and critic.

Critic Actor
Q-value function critic Q(S,A), which you create
using rlQValueFunction

Deterministic policy actor π(S), which you create
using rlContinuousDeterministicActor

During training, a DDPG agent:

• Updates the actor and critic properties at each time step during learning.
• Stores past experiences using a circular experience buffer. The agent updates the actor and critic

using a mini-batch of experiences randomly sampled from the buffer.
• Perturbs the action chosen by the policy using a stochastic noise model at each training step.

Actor and Critic Functions
To estimate the policy and value function, a DDPG agent maintains four function approximators:

• Actor π(S;θ)— The actor, with parameters θ, takes observation S and returns the corresponding
action that maximizes the long-term reward.

• Target actor πt(S;θt) — To improve the stability of the optimization, the agent periodically updates
the target actor parameters θt using the latest actor parameter values.

• Critic Q(S,A;ϕ) — The critic, with parameters ϕ, takes observation S and action A as inputs and
returns the corresponding expectation of the long-term reward.

• Target critic Qt(S,A;ϕt) — To improve the stability of the optimization, the agent periodically
updates the target critic parameters ϕt using the latest critic parameter values.

Both Q(S,A;ϕ) and Qt(S,A;ϕt) have the same structure and parameterization, and both π(S;θ) and
πt(S;θt) have the same structure and parameterization.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

During training, the agent tunes the parameter values in θ. After training, the parameters remain at
their tuned value and the trained actor function approximator is stored in π(S).
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Agent Creation
You can create and train DDPG agents at the MATLAB command line or using the Reinforcement
Learning Designer app. For more information on creating agents using Reinforcement Learning
Designer, see “Create Agents Using Reinforcement Learning Designer” on page 3-7.

At the command line, you can create a DDPG agent with default actor and critics based on the
observation and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlDDPGAgentOptions object.
5 Create the agent using an rlDDPGAgent object.

Alternatively, you can create actor and critic and use these objects to create your agent. In this case,
ensure that the input and output dimensions of the actor and critic match the corresponding action
and observation specifications of the environment.

1 Create an actor using an rlContinuousDeterministicActor object.
2 Create a critic using an rlQValueFunction object.
3 Specify agent options using an rlDDPGAgentOptions object.
4 Create the agent using an rlDDPGAgent object.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

Training Algorithm
DDPG agents use the following training algorithm, in which they update their actor and critic models
at each time step. To configure the training algorithm, specify options using an
rlDDPGAgentOptions object.

• Initialize the critic Q(S,A;ϕ) with random parameter values ϕ, and initialize the target critic
parameters ϕt with the same values: ϕt = ϕ.

• Initialize the actor π(S;θ) with random parameter values θ, and initialize the target actor
parameters θt with the same values: θt = θ.

• For each training time step:

1 For the current observation S, select action A = π(S;θ) + N, where N is stochastic noise from
the noise model. To configure the noise model, use the NoiseOptions option.

2 Execute action A. Observe the reward R and next observation S'.
3 Store the experience (S,A,R,S') in the experience buffer. The length of the experience buffer is

specified in the ExperienceBufferLength property of the rlDDPGAgentOptions object.
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4 Sample a random mini-batch of M experiences (Si,Ai,Ri,S'i) from the experience buffer. To
specify M, use the MiniBatchSize property of the rlDDPGAgentOptions object.

5 If S'i is a terminal state, set the value function target yi to Ri. Otherwise, set it to

yi = Ri + γQt Si′, πt Si′; θt ; ϕt

The value function target is the sum of the experience reward Ri and the discounted future
reward. To specify the discount factor γ, use the DiscountFactor option.

To compute the cumulative reward, the agent first computes a next action by passing the next
observation S'i from the sampled experience to the target actor. The agent finds the
cumulative reward by passing the next action to the target critic.

6 Update the critic parameters by minimizing the loss L across all sampled experiences.

L = 1
M ∑

i = 1

M
yi− Q Si, Ai; ϕ 2

7 Update the actor parameters using the following sampled policy gradient to maximize the
expected discounted reward.

∇θ J ≈ 1
M ∑

i = 1

M
GaiGπi

Gai = ∇AQ Si, A; ϕ where A = π Si; θ
Gπi = ∇θπ Si; θ

Here, Gai is the gradient of the critic output with respect to the action computed by the actor
network, and Gπi is the gradient of the actor output with respect to the actor parameters. Both
gradients are evaluated for observation Si.

8 Update the target actor and critic parameters depending on the target update method. For
more information see “Target Update Methods” on page 3-31.

For simplicity, the actor and critic updates in this algorithm show a gradient update using basic
stochastic gradient descent. The actual gradient update method depends on the optimizer you specify
using in the rlOptimizerOptions object assigned to the rlCriticOptimizerOptions property.

Target Update Methods
DDPG agents update their target actor and critic parameters using one of the following target update
methods.

• Smoothing — Update the target parameters at every time step using smoothing factor τ. To
specify the smoothing factor, use the TargetSmoothFactor option.

ϕt = τϕ + 1− τ ϕt critic parameters
θt = τθ + 1− τ θt actor parameters

• Periodic — Update the target parameters periodically without smoothing (TargetSmoothFactor
= 1). To specify the update period, use the TargetUpdateFrequency parameter.

• Periodic Smoothing — Update the target parameters periodically with smoothing.

To configure the target update method, create a rlDDPGAgentOptions object, and set the
TargetUpdateFrequency and TargetSmoothFactor parameters as shown in the following table.
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Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing (default) 1 Less than 1
Periodic Greater than 1 1
Periodic smoothing Greater than 1 Less than 1

References
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More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policies and Value Functions” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-3
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Twin-Delayed Deep Deterministic Policy Gradient Agents
The twin-delayed deep deterministic policy gradient (TD3) algorithm is a model-free, online, off-policy
reinforcement learning method. A TD3 agent is an actor-critic reinforcement learning agent that
searches for an optimal policy that maximizes the expected cumulative long-term reward.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

The TD3 algorithm is an extension of the DDPG algorithm. DDPG agents can overestimate value
functions, which can produce suboptimal policies. To reduce value function overestimation, the TD3
algorithm includes the following modifications of the DDPG algorithm.

1 A TD3 agent learns two Q-value functions and uses the minimum value function estimate during
policy updates.

2 A TD3 agent updates the policy and targets less frequently than the Q functions.
3 When updating the policy, a TD3 agent adds noise to the target action, which makes the policy

less likely to exploit actions with high Q-value estimates.

You can use a TD3 agent to implement one of the following training algorithms, depending on the
number of critics you specify.

• TD3 — Train the agent with two Q-value functions. This algorithm implements all three of the
preceding modifications.

• Delayed DDPG — Train the agent with a single Q-value function. This algorithm trains a DDPG
agent with target policy smoothing and delayed policy and target updates.

TD3 agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous or discrete Continuous

TD3 agents use the following actor and critics.

Critics Actor
One or more Q-value function critics Q(S,A),
which you create using rlQValueFunction

Deterministic policy actor π(S), which you create
using rlContinuousDeterministicActor

During training, a TD3 agent:

• Updates the actor and critic properties at each time step during learning.
• Stores past experiences using a circular experience buffer. The agent updates the actor and critic

using a mini-batch of experiences randomly sampled from the buffer.
• Perturbs the action chosen by the policy using a stochastic noise model at each training step.

Actor and Critic Functions
To estimate the policy and value function, a TD3 agent maintains the following function
approximators:
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• Deterministic actor π(S;θ) — The actor, with parameters θ, takes observation S and returns the
corresponding action that maximizes the long-term reward.

• Target actor πt(S;θt) — To improve the stability of the optimization, the agent periodically updates
the target actor parameters θt using the latest actor parameter values.

• One or two Q-value critics Qk(S,A;ϕk) — The critics, each with different parameters ϕk, take
observation S and action A as inputs and returns the corresponding expectation of the long-term
reward.

• One or two target critics Qtk(S,A;ϕtk) — To improve the stability of the optimization, the agent
periodically updates the target critic parameters ϕtk using the latest corresponding critic
parameter values. The number of target critics matches the number of critics.

Both π(S;θ) and πt(S;θt) have the same structure and parameterization.

For each critic, Qk(S,A;ϕk) and Qtk(S,A;ϕtk) have the same structure and parameterization.

When using two critics, Q1(S,A;ϕ1) and Q2(S,A;ϕ2), each critic can have a different structure, though
TD3 works best when the critics have the same structure. When the critics have the same structure,
they must have different initial parameter values.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

During training, the agent tunes the parameter values in θ. After training, the parameters remain at
their tuned value and the trained actor function approximator is stored in π(S).

Agent Creation
You can create and train TD3 agents at the MATLAB command line or using the Reinforcement
Learning Designer app. For more information on creating agents using Reinforcement Learning
Designer, see “Create Agents Using Reinforcement Learning Designer” on page 3-7.

At the command line, you can create a TD3 agent with default actor and critics based on the
observation and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlTD3AgentOptions object.
5 Create the agent using an rlTD3Agent object.

Alternatively, you can create actor and critics and use these objects to create your agent. In this case,
ensure that the input and output dimensions of the actor and critics match the corresponding action
and observation specifications of the environment.

1 Create an actor using an rlContinuousDeterministicActor object.
2 Create one or two critics using rlQValueFunction objects.
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3 Specify agent options using an rlTD3AgentOptions object.
4 Create the agent using an rlTD3Agent object.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

Training Algorithm
TD3 agents use the following training algorithm, in which they update their actor and critic models at
each time step. To configure the training algorithm, specify options using an rlDDPGAgentOptions
object. Here, K = 2 is the number of critics and k is the critic index.

• Initialize each critic Qk(S,A;ϕk) with random parameter values ϕk, and initialize each target critic
with the same random parameter values: ϕtk = ϕk.

• Initialize the actor π(S;θ) with random parameter values θ, and initialize the target actor with the
same parameter values: θt = θ.

• For each training time step:

1 For the current observation S, select action A = π(S;θ) + N, where N is stochastic noise from
the noise model. To configure the noise model, use the ExplorationModel option.

2 Execute action A. Observe the reward R and next observation S'.
3 Store the experience (S,A,R,S') in the experience buffer.
4 Sample a random mini-batch of M experiences (Si,Ai,Ri,S'i) from the experience buffer. To

specify M, use the MiniBatchSize option.
5 If S'i is a terminal state, set the value function target yi to Ri. Otherwise, set it to

yi = Ri + γ * min
k

Qtk Si′, clip πt Si′; θt + ε ; ϕtk

The value function target is the sum of the experience reward Ri and the minimum discounted
future reward from the critics. To specify the discount factor γ, use the DiscountFactor
option.

To compute the cumulative reward, the agent first computes a next action by passing the next
observation S'i from the sampled experience to the target actor. Then, the agent adds noise ε
to the computed action using the TargetPolicySmoothModel, and clips the action based on
the upper and lower noise limits. The agent finds the cumulative rewards by passing the next
action to the target critics.

6 At every time training step, update the parameters of each critic by minimizing the loss Lk
across all sampled experiences.

Lk = 1
M ∑

i = 1

M
yi− Qk Si, Ai; ϕk

2

7 Every D1 steps, update the actor parameters using the following sampled policy gradient to
maximize the expected discounted reward. To set D1, use the PolicyUpdateFrequency
option.
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∇θ J ≈ 1
M ∑

i = 1

M
GaiGπi

Gai = ∇Amin
k

Qk Si, A; ϕ where A = π Si; θ

Gπi = ∇θπ Si; θ

Here, Gai is the gradient of the minimum critic output with respect to the action computed by
the actor network, and Gπi is the gradient of the actor output with respect to the actor
parameters. Both gradients are evaluated for observation Si.

8 Every D2 steps, update the target actor and critics depending on the target update method. To
specify D2, use the TargetUpdateFrequency option. For more information, see “Target
Update Methods” on page 3-36.

For simplicity, the actor and critic updates in this algorithm show a gradient update using basic
stochastic gradient descent. The actual gradient update method depends on the optimizer you specify
using in the rlOptimizerOptions object assigned to the rlCriticOptimizerOptions property.

Target Update Methods
TD3 agents update their target actor and critic parameters using one of the following target update
methods.

• Smoothing — Update the target parameters at every time step using smoothing factor τ. To
specify the smoothing factor, use the TargetSmoothFactor option.

ϕtk = τϕk + 1− τ ϕtk critic parameters
θt = τθ + 1− τ θt actor parameters

• Periodic — Update the target parameters periodically without smoothing (TargetSmoothFactor
= 1). To specify the update period, use the TargetUpdateFrequency parameter.

ϕtk = ϕk

θt = θ

• Periodic Smoothing — Update the target parameters periodically with smoothing.

To configure the target update method, create a rlTD3AgentOptions object, and set the
TargetUpdateFrequency and TargetSmoothFactor parameters as shown in the following table.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing (default) 1 Less than 1
Periodic Greater than 1 1
Periodic smoothing Greater than 1 Less than 1

References
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See Also
rlTD3Agent | rlTD3AgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policies and Value Functions” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-3
• “Train Biped Robot to Walk Using Reinforcement Learning Agents” on page 5-200
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Actor-Critic Agents
You can use the actor-critic (AC) agent, which uses a model-free, online, on-policy reinforcement
learning method, to implement actor-critic algorithms, such as A2C and A3C. The goal of this agent is
to optimize the policy (actor) directly and train a critic to estimate the return or future rewards [1].

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

AC agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Discrete or continuous Discrete or continuous

AC agents use the following actor and critics.

Critic Actor
Value function critic V(S), which you create using
rlValueFunction

Stochastic policy actor π(S), which you create
using rlDiscreteCategoricalActor (for
discrete action spaces) or
rlContinuousGaussianActor (for continuous
action spaces)

During training, an AC agent:

• Estimates probabilities of taking each action in the action space and randomly selects actions
based on the probability distribution.

• Interacts with the environment for multiple steps using the current policy before updating the
actor and critic properties.

If the UseDeterministicExploitation option in rlACAgentOptions is set to true the action
with maximum likelihood is always used in sim and generatePolicyFunction. This causes the
simulated agent and the generated policy to behave deterministically.

Actor and Critic Function Approximators
To estimate the policy and value function, an AC agent maintains two function approximators.

• Actor π(A|S;θ) — The actor, with parameters θ, outputs the conditional probability of taking each
action A when in state S as one of the following:

• Discrete action space — The probability of taking each discrete action. The sum of these
probabilities across all actions is 1.

• Continuous action space — The mean and standard deviation of the Gaussian probability
distribution for each continuous action.

• Critic V(S;ϕ) — The critic, with parameters ϕ, takes observation S and returns the corresponding
expectation of the discounted long-term reward.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.
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During training, the agent tunes the parameter values in θ. After training, the parameters remain at
their tuned value and the trained actor function approximator is stored in π(A|S).

Agent Creation
You can create an AC agent with default actor and critics based on the observation and action
specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlACAgentOptions object.
5 Create the agent using an rlACAgent object.

Alternatively, you can create actor and critic and use these objects to create your agent. In this case,
ensure that the input and output dimensions of the actor and critic match the corresponding action
and observation specifications of the environment.

1 Create an actor using an rlDiscreteCategoricalActor (for discrete action spaces) or an
rlContinuousGaussianActor (for continuous action spaces) object.

2 Create a critic using an rlValueFunction object.
3 Specify agent options using an rlACAgentOptions object.
4 Create the agent using an rlACAgent object.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

Training Algorithm
AC agents use the following training algorithm. To configure the training algorithm, specify options
using an rlACAgentOptions object.

1 Initialize the actor π(A|S;θ) with random parameter values θ.
2 Initialize the critic V(S;ϕ) with random parameter values ϕ.
3 Generate N experiences by following the current policy. The episode experience sequence is

Sts, Ats, Rts + 1, Sts + 1, …, Sts + N − 1, Ats + N − 1, Rts + N, Sts + N

Here, St is a state observation, At is an action taken from that state, St+1 is the next state, and Rt
+1 is the reward received for moving from St to St+1.

When in state St, the agent computes the probability of taking each action in the action space
using π(A|St;θ) and randomly selects action At based on the probability distribution.

ts is the starting time step of the current set of N experiences. At the beginning of the training
episode, ts = 1. For each subsequent set of N experiences in the same training episode, ts = ts +
N.
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For each training episode that does not contain a terminal state, N is equal to the
NumStepsToLookAhead option value. Otherwise, N is less than NumStepsToLookAhead and SN
is the terminal state.

4 For each episode step t = ts+1, ts+2, …, ts+N, compute the return Gt, which is the sum of the
reward for that step and the discounted future reward. If Sts+N is not a terminal state, the
discounted future reward includes the discounted state value function, computed using the critic
network V.

Gt = ∑
k = t

ts + N
γk− tRk + bγN − t + 1V Sts + N; ϕ

Here, b is 0 if Sts+N is a terminal state and 1 otherwise.

To specify the discount factor γ, use the DiscountFactor option.
5 Compute the advantage function Dt.

Dt = Gt − V St; ϕ
6 Accumulate the gradients for the actor network by following the policy gradient to maximize the

expected discounted reward.

dθ = ∑
t = 1

N
∇θμlnπ A St; θ ⋅ Dt

7 Accumulate the gradients for the critic network by minimizing the mean squared error loss
between the estimated value function V (St;ϕ) and the computed target return Gt across all N
experiences. If the EntropyLossWeight option is greater than zero, then additional gradients
are accumulated to minimize the entropy loss function.

dϕ = ∑
t = 1

N
∇ϕ Gt − V St; ϕ 2

8 Update the actor parameters by applying the gradients.

θ = θ + αdθ

Here, α is the learning rate of the actor. Specify the learning rate when you create the actor by
setting the LearnRate option in the rlActorOptimizerOptions property within the agent
options object.

9 Update the critic parameters by applying the gradients.

ϕ = ϕ + βdϕ

Here, β is the learning rate of the critic. Specify the learning rate when you create the critic by
setting the LearnRate option in the rlCriticOptimizerOptions property within the agent
options object.

10 Repeat steps 3 through 9 for each training episode until training is complete.

For simplicity, the actor and critic updates in this algorithm description show a gradient update using
basic stochastic gradient descent. The actual gradient update method depends on the optimizer you
specify using in the rlOptimizerOptions object assigned to the rlCriticOptimizerOptions
property.
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Proximal Policy Optimization Agents
Proximal policy optimization (PPO) is a model-free, online, on-policy, policy gradient reinforcement
learning method. This algorithm is a type of policy gradient training that alternates between sampling
data through environmental interaction and optimizing a clipped surrogate objective function using
stochastic gradient descent. The clipped surrogate objective function improves training stability by
limiting the size of the policy change at each step [1].

PPO is a simplified version of TRPO. TRPO is more computationally expensive than PPO, but TRPO
tends to be more robust than PPO if the environment dynamics are deterministic and the observation
is low dimensional. For more information on TRPO agents, see “Trust Region Policy Optimization
Agents” on page 3-48.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

PPO agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Discrete or continuous Discrete or continuous

PPO agents use the following actor and critics.

Critic Actor
Value function critic V(S), which you create using
rlValueFunction

Stochastic policy actor π(S), which you create
using rlDiscreteCategoricalActor (for
discrete action spaces) or
rlContinuousGaussianActor (for continuous
action spaces)

During training, a PPO agent:

• Estimates probabilities of taking each action in the action space and randomly selects actions
based on the probability distribution.

• Interacts with the environment for multiple steps using the current policy before using mini-
batches to update the actor and critic properties over multiple epochs.

If the UseDeterministicExploitation option in rlPPOAgentOptions is set to true the action
with maximum likelihood is always used in sim and generatePolicyFunction. As a result, the
simulated agent and the generated policy behave deterministically.

Actor and Critic Function Approximators
To estimate the policy and value function, a PPO agent maintains two function approximators.

• Actor π(A|S;θ) — The actor, with parameters θ, outputs the conditional probability of taking each
action A when in state S as one of the following:

• Discrete action space — The probability of taking each discrete action. The sum of these
probabilities across all actions is 1.

• Continuous action space — The mean and standard deviation of the Gaussian probability
distribution for each continuous action.
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• Critic V(S;ϕ) — The critic, with parameters ϕ, takes observation S and returns the corresponding
expectation of the discounted long-term reward.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

During training, the agent tunes the parameter values in θ. After training, the parameters remain at
their tuned value and the trained actor function approximator is stored in π(A|S).

Agent Creation
You can create and train PPO agents at the MATLAB command line or using the Reinforcement
Learning Designer app. For more information on creating agents using Reinforcement Learning
Designer, see “Create Agents Using Reinforcement Learning Designer” on page 3-7.

At the command line, you can create a PPO agent with default actor and critic based on the
observation and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 Specify agent options using an rlPPOAgentOptions object.
5 Create the agent using an rlPPOAgent object.

Alternatively, you can create actor and critic and use these objects to create your agent. In this case,
ensure that the input and output dimensions of the actor and critic match the corresponding action
and observation specifications of the environment.

1 Create an actor using an rlDiscreteCategoricalActor object (for discrete action spaces) or
an rlContinuousGaussianActor object (for continuous action spaces).

2 Create a critic using an rlValueFunction object.
3 If needed, specify agent options using an rlPPOAgentOptions object.
4 Create the agent using the rlPPOAgent function.

PPO agents support actors and critics that use recurrent deep neural networks as function
approximators.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

Training Algorithm
PPO agents use the following training algorithm. To configure the training algorithm, specify options
using an rlPPOAgentOptions object.

1 Initialize the actor π(A|S;θ) with random parameter values θ.
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2 Initialize the critic V(S;ϕ) with random parameter values ϕ.
3 Generate N experiences by following the current policy. The experience sequence is

Sts, Ats, Rts + 1, Sts + 1, …, Sts + N − 1, Ats + N − 1, Rts + N, Sts + N

Here, St is a state observation, At is an action taken from that state, St+1 is the next state, and Rt
+1 is the reward received for moving from St to St+1.

When in state St, the agent computes the probability of taking each action in the action space
using π(A|St;θ) and randomly selects action At based on the probability distribution.

ts is the starting time step of the current set of N experiences. At the beginning of the training
episode, ts = 1. For each subsequent set of N experiences in the same training episode, ts ← ts +
N.

For each experience sequence that does not contain a terminal state, N is equal to the
ExperienceHorizon option value. Otherwise, N is less than ExperienceHorizon and SN is
the terminal state.

4 For each episode step t = ts+1, ts+2, …, ts+N, compute the return and advantage function using
the method specified by the AdvantageEstimateMethod option.

• Finite Horizon (AdvantageEstimateMethod = "finite-horizon") — Compute the
return Gt, which is the sum of the reward for that step and the discounted future reward [2].

Gt = ∑
k = t

ts + N
γk− tRk + bγN − t + 1V Sts + N; ϕ

Here, b is 0 if Sts+N is a terminal state and 1 otherwise. That is, if Sts+N is not a terminal state,
the discounted future reward includes the discounted state value function, computed using
the critic network V.

Compute the advantage function Dt.

Dt = Gt − V St; ϕ
• Generalized Advantage Estimator (AdvantageEstimateMethod = "gae") — Compute

the advantage function Dt, which is the discounted sum of temporal difference errors [3].

Dt = ∑
k = t

ts + N − 1
γλ k− tδk

δk = Rt + bγV St; ϕ

Here, b is 0 if Sts+N is a terminal state and 1 otherwise. λ is a smoothing factor specified using
the GAEFactor option.

Compute the return Gt.

Gt = Dt + V St; ϕ

To specify the discount factor γ for either method, use the DiscountFactor option.
5 Learn from mini-batches of experiences over K epochs. To specify K, use the NumEpoch option.

For each learning epoch:
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a Sample a random mini-batch data set of size M from the current set of experiences. To
specify M, use the MiniBatchSize option. Each element of the mini-batch data set contains
a current experience and the corresponding return and advantage function values.

b Update the critic parameters by minimizing the loss Lcritic across all sampled mini-batch data.

Lcritic ϕ = 1
M ∑

i = 1

M
Gi− V Si; ϕ 2

c Normalize the advantage values Di based on recent unnormalized advantage values.

• If the NormalizedAdvantageMethod option is 'none', do not normalize the advantage
values.

D i Di

• If the NormalizedAdvantageMethod option is 'current', normalize the advantage
values based on the unnormalized advantages in the current mini-batch.

D i
Di−mean D1, D2, …, DM

std D1, D2, …, DM

• If the NormalizedAdvantageMethod option is 'moving', normalize the advantage
values based on the unnormalized advantages for the N most recent advantages,
including the current advantage value. To specify the window size N, use the
AdvantageNormalizingWindow option.

D i
Di−mean D1, D2, …, DN

std D1, D2, …, DN

d Update the actor parameters by minimizing the actor loss function Lactor across all sampled
mini-batch data.

Lactor θ = 1
M ∑

i = 1

M
−min ri θ ⋅ Di, ci θ ⋅ Di + wℋ i θ, Si

ri θ =
π Ai Si; θ

π Ai Si; θold

ci θ = max min ri θ , 1 + ε , 1− ε

Here:

• Di and Gi are the advantage function and return value for the ith element of the mini-
batch, respectively.

• π(Ai|Si;θ) is the probability of taking action Ai when in state Si, given the updated policy
parameters θ.

• π(Ai|Si;θold) is the probability of taking action Ai when in state Si, given the previous policy
parameters θold from before the current learning epoch.

• ε is the clip factor specified using the ClipFactor option.
• ℋi(θ) is the entropy loss and w is the entropy loss weight factor, specified using the

EntropyLossWeight option. For more information on entropy loss, see “Entropy Loss”
on page 3-46.

6 Repeat steps 3 through 5 until the training episode reaches a terminal state.

 Proximal Policy Optimization Agents

3-45



Entropy Loss
To promote agent exploration, you can add an entropy loss term wℋi(θ,Si) to the actor loss function,
where w is the entropy loss weight and ℋi(θ,Si) is the entropy.

The entropy value is higher when the agent is more uncertain about which action to take next.
Therefore, maximizing the entropy loss term (minimizing the negative entropy loss) increases the
agent uncertainty, thus encouraging exploration. To promote additional exploration, which can help
the agent move out of local optima, you can specify a larger entropy loss weight.

For a discrete action space, the agent uses the following entropy value. In this case, the actor outputs
the probability of taking each possible discrete action.

ℋ i θ, Si = − ∑
k = 1

P
π Ak Si; θ lnπ Ak Si; θ

Here:

• P is the number of possible discrete actions.
• π(Ak|Si;θ) is the probability of taking action Ak when in state Si following the current policy.

For a continuous action space, the agent uses the following entropy value. In this case, the actor
outputs the mean and standard deviation of the Gaussian distribution for each continuous action.

ℋ i θ, Si = 1
2 ∑k = 1

C
ln 2π ⋅ e ⋅ σk, i

2

Here:

• C is the number of continuous actions output by the actor.
• σk,i is the standard deviation for action k when in state Si following the current policy.
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More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policies and Value Functions” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-3
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Trust Region Policy Optimization Agents
Trust Region Policy Optimization (TRPO) is a model-free, online, on-policy, policy gradient
reinforcement learning algorithm. TRPO alternates between sampling data through environmental
interaction and updating the policy parameters by solving a constrained optimization problem. The
KL-divergence between the old policy and the new policy is used as a constraint during optimization.
As a result, this algorithm prevents significant performance drops compared to standard policy
gradient methods by keeping the updated policy within a trust region close to the current policy [1].

PPO is a simplified version of TRPO. TRPO is more computationally expensive than PPO, but TRPO
tends to be more robust than PPO if the environment dynamics are deterministic and the number of
observations is low. For more information on PPO agents, see “Proximal Policy Optimization Agents”
on page 3-42.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

TRPO agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Discrete or continuous Discrete or continuous

TRPO agents use the following actor and critic.

Critic Actor
Value function critic V(S), which you create using
rlValueFunction

Stochastic policy actor π(S), which you create
using rlDiscreteCategoricalActor (for
discrete action spaces) or
rlContinuousGaussianActor (for continuous
action spaces)

During training, a TRPO agent:

• Estimates probabilities of taking each action in the action space and randomly selects actions
based on the probability distribution.

• Interacts with the environment for multiple steps using the current policy before using mini-
batches to update the actor and critic properties over multiple epochs.

If the UseDeterministicExploitation option in rlTRPOAgentOptions is set to true the action
with maximum likelihood is always used in sim and generatePolicyFunction. As a result, the
simulated agent and the generated policy behave deterministically.

Actor and Critic Function Approximators
To estimate the policy and value function, a TRPO agent maintains two function approximators.

• Actor π(A|S;θ) — The actor, with parameters θ, outputs the conditional probability of taking each
action A when in state S as one of the following:

• Discrete action space — The probability of taking each discrete action. The sum of these
probabilities across all actions is 1.
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• Continuous action space — The mean and standard deviation of the Gaussian probability
distribution for each continuous action.

• Critic V(S;ϕ) — The critic, with parameters ϕ, takes observation S and returns the corresponding
expectation of the discounted long-term reward.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

During training, the agent tunes the parameter values in θ. After training, the parameters remain at
their tuned value and the trained actor function approximator is stored in π(A|S).

Agent Creation
You can create and train TRPO agents at the MATLAB command line or using the Reinforcement
Learning Designer app. For more information on creating agents using Reinforcement Learning
Designer, see “Create Agents Using Reinforcement Learning Designer” on page 3-7.

At the command line, you can create a TRPO agent with default actor and critic based on the
observation and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer. To do so, create an agent
initialization options object using rlAgentInitializationOptions.

4 Specify agent options using an rlTRPOAgentOptions object.
5 Create the agent using an rlTRPOAgent object.

Alternatively, you can create actor and critic and use these objects to create your agent. In this case,
ensure that the input and output dimensions of the actor and critic match the corresponding action
and observation specifications of the environment.

1 Create an actor using rlDiscreteCategoricalActor object (for discrete action spaces) or
rlContinuousGaussianActor object (for continuous action spaces).

2 Create a critic using an rlValueFunction object.
3 If needed, specify agent options using an rlTRPOAgentOptions object.
4 Create the agent using the rlTRPOAgent function.

TRPO agents do not support actors and critics that use recurrent deep neural networks as function
approximators. TRPO agents also do not support deep neural networks that use a quadraticLayer.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

Trust Region Policy Optimization
Trust region policy optimization finds the actor parameters that minimize the following actor loss
function.
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Lactor θ = − 1
M ∑

i = 1

M π Ai Si; θ
π Ai Si; θold

Di + wℋ i θ, Si

Here:

• M is the mini-batch size.
• Di is an advantage function.
• πi(Ai|Si;θ) is the probability of taking action Ai following the current policy. This value is a specific

value of the probability (discrete action) or of the probability density function (continuous action).
• π(Ai|Si;θold) is the probability of taking action Ai following the old policy.
• wℋi(θ,Si) is an entropy loss term, where w is the entropy loss weight and ℋi(θ,Si) is the entropy.

For more information, see “Entropy Loss” on page 3-53.

This minimization is subject to the following constraint.

1
M ∑

i = 1

M
DKL θold, θ, Si ≤ δ

Here:

• DKL(θold,θ,Si) is the Kullback-Leibler (KL) divergence between the old policy π(A|Si;θold) and current
policy π(A|Si;θ). DKL measures how much the probability distributions of the old and new policies
differ. DKL is zero when the two distributions are identical.

• δ is the limit for DKL and controls how much the new policy can deviate from the old policy.

For agents with discrete action spaces, DKL is computed as follows, where P is the number of actions.

DKL θold, θ, Si = ∑
k = 1

P
π Ak Si; θold ln

π Ak Si; θold
π Ak Si; θ

For agents with continuous action spaces, DKL is computed as follows.

DKL θold, θ, Si = 1
P ∑k = 1

P
ln σθ, k − ln σθold, k +

σθold, k
2 + μθold, k− μθ, k

2

2σθ, k
2 − 0.5

Here:

• μθ,k and σθ,k are the mean and standard deviation for the kth action output by the current actor
policy π(Ak|Si;θ).

• μθold,k and σθold,k are the mean and standard deviation for the kth action output by the old policy
π(Ak|Si;θold).

To approximate this optimization problem, the TRPO agent uses a linear approximation of Lactor(θ) and
a quadratic approximation of DKL(θold,θ,Si). The approximations are computed by taking the Taylor
series expansion around θ.

min
θ

Lactor θ ≈ g θ− θold = ∇θLactor θ θ = θold ⋅ θ− θold

sub ject to 1
2 θold− θ TH θold− θ ≤ δ

where H = ∇θ
2 1

M∑i = 1
M DKL θold, θ, Si θ = θold

3 Create Agents

3-50



The analytical solution to this approximate optimization problem is as follows.

θ = θold + α 2δ
xTH−1x

x

Here, x=H-1g and α is a coefficient for ensuring that the policy improves and satisfies the constraint.

Training Algorithm
TRPO agents use the following training algorithm. To configure the training algorithm, specify
options using an rlTRPOAgentOptions object.

1 Initialize the actor π(A|S;θ) with random parameter values θ.
2 Initialize the critic V(S;ϕ) with random parameter values ϕ.
3 Generate N experiences by following the current policy. The experience sequence is

Sts, Ats, Rts + 1, Sts + 1, …, Sts + N − 1, Ats + N − 1, Rts + N, Sts + N

Here, St is a state observation, At is an action taken from that state, St+1 is the next state, and Rt
+1 is the reward received for moving from St to St+1.

When in state St, the agent computes the probability of taking each action in the action space
using π(A|St;θ) and randomly selects action At based on the probability distribution.

ts is the starting time step of the current set of N experiences. At the beginning of the training
episode, ts = 1. For each subsequent set of N experiences in the same training episode, ts ← ts +
N.

For each experience sequence that does not contain a terminal state, N is equal to the
ExperienceHorizon option value. Otherwise, N is less than ExperienceHorizon and SN is
the terminal state.

4 For each episode step t = ts+1, ts+2, …, ts+N, compute the return and advantage function using
the method specified by the AdvantageEstimateMethod option.

• Finite Horizon (AdvantageEstimateMethod = "finite-horizon") — Compute the
return Gt, which is the sum of the reward for that step and the discounted future reward [2].

Gt = ∑
k = t

ts + N
γk− tRk + bγN − t + 1V Sts + N; ϕ

Here, b is 0 if Sts+N is a terminal state and 1 otherwise. That is, if Sts+N is not a terminal state,
the discounted future reward includes the discounted state value function, computed using
the critic network V.

Compute the advantage function Dt.

Dt = Gt − V St; ϕ
• Generalized Advantage Estimator (AdvantageEstimateMethod = "gae") — Compute

the advantage function Dt, which is the discounted sum of temporal difference errors [3].

Dt = ∑
k = t

ts + N − 1
γλ k− tδk

δk = Rt + bγV St; ϕ
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Here, b is 0 if Sts+N is a terminal state and 1 otherwise. λ is a smoothing factor specified using
the GAEFactor option.

Compute the return Gt.

Gt = Dt + V St; ϕ

To specify the discount factor γ for either method, use the DiscountFactor option.
5 Learn from mini-batches of experiences over K epochs. To specify K, use the NumEpoch option.

For each learning epoch:

a Sample a random mini-batch data set of size M from the current set of experiences. To
specify M, use the MiniBatchSize option. Each element of the mini-batch data set contains
a current experience and the corresponding return and advantage function values.

b Update the critic parameters by minimizing the loss Lcritic across all sampled mini-batch data.

Lcritic ϕ = 1
M ∑

i = 1

M
Gi− V Si; ϕ 2

c Normalize the advantage values Di based on recent unnormalized advantage values.

• If the NormalizedAdvantageMethod option is 'none', do not normalize the advantage
values.

D i Di

• If the NormalizedAdvantageMethod option is 'current', normalize the advantage
values based on the unnormalized advantages in the current mini-batch.

D i
Di−mean D1, D2, …, DM

std D1, D2, …, DM

• If the NormalizedAdvantageMethod option is 'moving', normalize the advantage
values based on the unnormalized advantages for the N most recent advantages,
including the current advantage value. To specify the window size N, use the
AdvantageNormalizingWindow option.

D i
Di−mean D1, D2, …, DN

std D1, D2, …, DN

d Update the actor parameters by solving the constrained optimization problem.

i Compute the policy gradient.

g = ∇θLactor θ = ∇θ −
1
M ∑

i = 1

M π Ai Si; θ
π Ai Si; θold

D i + wℋ i θ, Si

ii Apply the conjugate gradient (CG) method to find an approximate solution to the
following equation, where H is the Hessian of the KL-divergence between the old and
new policies.

x ≈ H−1g

To configure the termination conditions for the CG algorithm, use the
NumIterationsConjugateGradient and ConjugateGradientResidualTolerance
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options. To stabilize the numerical computation for the CG algorithm, use the
ConjugateGradientDamping option.

iii Using a line search algorithm, find the largest α that satisfies the following constraints.

θ = θold + α 2δ
xTH−1x

x

Lactor θ − Lactor θold < 0

1
M ∑

i = 1

M
DKL θold, θ, Si ≤ δ

α ∈ 1, 1
2, 1

22 , …, 1
2n− 1

Here, δ is the KL-divergence limit, which you set using the KLDivergenceLimit
option. n is the number of line search iterations, which you set using the
NumIterationsLineSearch option.

iv If a valid value of α exists, update the parameters of the actor network to θ. If a valid
value of α does not exist, do not update the actor parameters.

6 Repeat steps 3 through 5 until the training episode reaches a terminal state.

Entropy Loss
To promote agent exploration, you can add an entropy loss term wℋi(θ,Si) to the actor loss function,
where w is the entropy loss weight and ℋi(θ,Si) is the entropy.

The entropy value is higher when the agent is more uncertain about which action to take next.
Therefore, maximizing the entropy loss term (minimizing the negative entropy loss) increases the
agent uncertainty, thus encouraging exploration. To promote additional exploration, which can help
the agent move out of local optima, you can specify a larger entropy loss weight.

For a discrete action space, the agent uses the following entropy value. In this case, the actor outputs
the probability of taking each possible discrete action.

ℋ i θ, Si = − ∑
k = 1

P
π Ak Si; θ lnπ Ak Si; θ

Here:

• P is the number of possible discrete actions.
• π(Ak|Si;θ) is the probability of taking action Ak when in state Si following the current policy.

For a continuous action space, the agent uses the following entropy value. In this case, the actor
outputs the mean and standard deviation of the Gaussian distribution for each continuous action.

ℋ i θ, Si = 1
2 ∑k = 1

C
ln 2π ⋅ e ⋅ σk, i

2

Here:

• C is the number of continuous actions output by the actor.
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• σk,i is the standard deviation for action k when in state Si following the current policy.
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Soft Actor-Critic Agents
The soft actor-critic (SAC) algorithm is a model-free, online, off-policy, actor-critic reinforcement
learning method. The SAC algorithm computes an optimal policy that maximizes both the long-term
expected reward and the entropy of the policy. The policy entropy is a measure of policy uncertainty
given the state. A higher entropy value promotes more exploration. Maximizing both the expected
cumulative long term reward and the entropy balances and exploitation and exploration of the
environment.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

The implementation of the SAC agent in Reinforcement Learning Toolbox software uses two Q-value
function critics, which prevents overestimation of the value function. Other implementations of the
SAC algorithm use an additional value function critic.

SAC agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Discrete or continuous Continuous

SAC agents use the following actor and critic.

Critics Actor
Q-value function critics Q(S,A), which you create
using rlQValueFunction

Stochastic policy actor π(S), which you create
using rlContinuousGaussianActor

During training, a SAC agent:

• Updates the actor and critic properties at regular intervals during learning.
• Estimates the mean and standard deviation of a Gaussian probability distribution for the

continuous action space, then randomly selects actions based on the distribution.
• Updates an entropy weight term that balances the expected return and the entropy of the policy.
• Stores past experience using a circular experience buffer. The agent updates the actor and critic

using a mini-batch of experiences randomly sampled from the buffer.

If the UseDeterministicExploitation option in rlSACAgentOptions is set to true the action
with maximum likelihood is always used in sim and generatePolicyFunction. This causes the
simulated agent and the generated policy to behave deterministically.

Actor and Critic Function Approximators
To estimate the policy and value function, a SAC agent maintains the following function
approximators.

• Stochastic actor π(A|S;θ) — The actor, with parameters θ, outputs the mean ans standard
deviation of conditional Gaussian probability of taking each continuous action A when in state S.

• One or two Q-value critics Qk(S,A;ϕk) — The critics, each with parameters ϕk, take observation S
and action A as inputs and return the corresponding expectation of the value function, which
includes both the long-term reward and entropy.

 Soft Actor-Critic Agents

3-55



• One or two target critics Qtk(S,A;ϕtk) — To improve the stability of the optimization, the agent
periodically sets the target critic parameters ϕtk to the latest corresponding critic parameter
values. The number of target critics matches the number of critics.

When you use two critics, Q1(S,A;ϕ1) and Q2(S,A;ϕ2), each critic can have different structures. When
the critics have the same structure, they must have different initial parameter values.

Each critic Qk(S,A;ϕk) and corresponding target critic Qtk(S,A;ϕtk) must have the same structure and
parameterization.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

During training, the agent tunes the parameter values in θ. After training, the parameters remain at
their tuned value and the trained actor function approximator is stored in π(A|S).

Action Generation

The actor in a SAC agent generates mean and standard deviation outputs. To select an action, the
actor first randomly selects an unbounded action from a Gaussian distribution with these parameters.
During training, the SAC agent uses the unbounded probability distribution to compute the entropy of
the policy for the given observation.

If the action space of the SAC agent is bounded, the actor generates bounded actions by applying
tanh and scaling operations to the unbounded action.

Agent Creation
You can create and train SAC agents at the MATLAB command line or using the Reinforcement
Learning Designer app. For more information on creating agents using Reinforcement Learning
Designer, see “Create Agents Using Reinforcement Learning Designer” on page 3-7.

At the command line, you can create a SAC agent with default actor and critic based on the
observation and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.
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3 If needed, specify the number of neurons in each learnable layer or whether to use a recurrent
neural network. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlSACAgentOptions object.
5 Create the agent using an rlSACAgent object.

Alternatively, you can create actor and critics and use these objects to create your agent. In this case,
ensure that the input and output dimensions of the actor and critic match the corresponding action
and observation specifications of the environment.

1 Create a stochastic actor using an rlContinuousGaussianActor object. For SAC agents, in
order to properly scale the mean values to the desired action range, the actor network must not
contain a tanhLayer and scalingLayer as last two layers in the output path for the mean
values. Similarly, in order to ensure non-negativity of the standard deviation values, the actor
network must not contain a reluLayer as a last layer in the output path for the standard
deviation values.

2 Create one or two critics using rlQValueFunction objects.
3 Specify agent options using an rlSACAgentOptions object.
4 Create the agent using an rlSACAgent object.

SAC agents do not support actors and critics that use recurrent deep neural networks as function
approximators.

For more information on creating actors and critics for function approximation, see “Create Policies
and Value Functions” on page 4-2.

Training Algorithm
SAC agents use the following training algorithm, in which they periodically update their actor and
critic models and entropy weight. To configure the training algorithm, specify options using an
rlSACAgentOptions object. Here, K = 2 is the number of critics and k is the critic index.

• Initialize each critic Qk(S,A;ϕk) with random parameter values ϕk, and initialize each target critic
with the same random parameter values: ϕtk = ϕk.

• Initialize the actor π(S;θ) with random parameter values θ.
• Perform a warm start by taking a sequence of actions following the initial random policy in π(S).

For each action, store the experience in the experience buffer. To specify the number of warm up
actions, use the NumWarmStartSteps option.

• For each training time step:

1 For the current observation S, select action A using the policy in π(S;θ).
2 Execute action A. Observe the reward R and next observation S'.
3 Store the experience (S,A,R,S') in the experience buffer.
4 Sample a random mini-batch of M experiences (Si,Ai,Ri,S'i) from the experience buffer. To

specify M, use the MiniBatchSize option.
5 Every DC time steps, update the parameters of each critic by minimizing the loss Lk across all

sampled experiences. To specify DC, use the CriticUpdateFrequency option.

Lk = 1
M ∑

i = 1

M
yi− Qk Si, Ai; ϕk

2
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If S'i is a terminal state, the value function target yi is equal to the experience reward Ri.
Otherwise, the value function target is the sum of Ri, the minimum discounted future reward
from the critics, and the weighted entropy.

yi = Ri + γ * min
k

Qtk Si′, Ai′; ϕtk − αlnπ Si′; θ

Here:

• A'i is the bounded action derived from the unbounded output of the actor π(S'i).
• γ is the discount factor, which you specify using the DiscountFactor option.
• −αlnπ S; θ  is the weighted policy entropy for the bounded output of the actor when in

state S. α is the entropy loss weight, which you specify using the EntropyLossWeight
option.

6 Every DA time steps, update the actor parameters by minimizing the following objective
function. To set DA, use the PolicyUpdateFrequency option.

Jπ = 1
M ∑

i = 1

M
−min

k
Qtk Si, Ai; ϕtk + αlnπ Si; θ

7 Every DA time steps, also update the entropy weight by minimizing the following loss function.

Lα = 1
M ∑

i = 1

M
−αlnπ Si; θ − αℋ

Here, ℋ is the target entropy, which you specify using the
EntropyWeightOptions.TargetEntropy option.

8 Every DT steps, update the target critics depending on the target update method. To specify
DT, use the TargetUpdateFrequency option. For more information, see “Target Update
Methods” on page 3-36.

9 Repeat steps 4 through 8 NG times, where NG is the number of gradient steps, which you
specify using the NumGradientStepsPerUpdate option.

Target Update Methods
SAC agents update their target critic parameters using one of the following target update methods.

• Smoothing — Update the target critic parameters at every time step using smoothing factor τ. To
specify the smoothing factor, use the TargetSmoothFactor option.

ϕtk = τϕk + 1− τ ϕtk

• Periodic — Update the target critic parameters periodically without smoothing
(TargetSmoothFactor = 1). To specify the update period, use the TargetUpdateFrequency
parameter.

ϕtk = ϕk

• Periodic smoothing — Update the target parameters periodically with smoothing.

To configure the target update method, create an rlSACAgentOptions object, and set the
TargetUpdateFrequency and TargetSmoothFactor parameters as shown in the following table.
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Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing (default) 1 Less than 1
Periodic Greater than 1 1
Periodic smoothing Greater than 1 Less than 1
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Model-Based Policy Optimization Agents
Model-based policy optimization (MBPO) is a model-based, online, off-policy reinforcement learning
algorithm. For more information on the different types of reinforcement learning agents, see
“Reinforcement Learning Agents” on page 3-2.

The following figure shows the components and behavior of an MBPO agent. The agent samples real
experience data through environmental interaction and trains a model of the environment using this
experience. Then, the agent updates the policy parameters of its base agent using the real experience
data and experience generated from the environment model.

MBPO agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous Discrete or continuous

You can use the following off-policy agents as the base agent in an MBPO agent.

Action Space Base Off-Policy Agent
Discrete • DQN agent — “Deep Q-Network Agents” on page 3-21
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Action Space Base Off-Policy Agent
Continuous • DDPG agent — “Deep Deterministic Policy Gradient Agents” on

page 3-29
• TD3 agent — “Twin-Delayed Deep Deterministic Policy Gradient

Agents” on page 3-33
• SAC agent — “Soft Actor-Critic Agents” on page 3-55

MBPO agents use an environment model that you define using an rlNeuralNetworkEnvironment
object., which contains the following components. In general, these components use a deep neural
network to learn the environment behavior during training.

• One or more transition functions that predict the next observation based on the current
observation and action. You can define deterministic transition functions using
rlContinuousDeterministicTransitionFunction objects or stochastic transition functions
using rlContinuousGaussianTransitionFunction objects.

• A reward function that predicts the reward from the environment based on a combination of the
current observation, current action, and next observation. You can define a deterministic reward
function using an rlContinuousDeterministicRewardFunction object or a stochastic
reward function using an rlContinuousGaussianRewardFunction object. You can also define
a known reward function using a custom function.

• An is-done function that predicts the termination signal based on a combination of the current
observation, current action, and next observation. You can also define a known termination signal
using a custom function.

During training, an MBPO agent:

• Updates the environment model at the beginning of each episode by training the transition
functions, reward function, and is-done function.

• Generates samples using the trained environment model and stores the samples in a circular
experience buffer.

• Stores real samples from the interaction between the agent and the environment using a separate
circular experience buffer within the base agent.

• Updates the actor and critic of the base agent using a mini-batch of experiences randomly
sampled from both the generated experience buffer and the real experience buffer.

Training Algorithm
MBPO agents use the following training algorithm, in which they periodically update the environment
model and the base off-policy agent. To configure the training algorithm, specify options using an
rlMBPOAgentOptions object.

1 Initialize the actor and critics of the base agent.
2 Initialize the transition functions, reward function, and is-done function in the environment

model.
3 At the beginning of each training episode:

a For each model-training epoch, perform the following steps. To specify the number of
epochs, use the NumEpochForTrainingModel option.
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i Train the transition functions. If the corresponding LearnRate optimizer option is 0,
skip this step.

• Use a half-mean loss for an rlContinuousDeterministicTransitionFunction
object and a maximum likelihood loss for an
rlContinuousStochasticTransitionFunction object.

• To make each observation channel equally important, first compute the loss for each
observation channel. Then, divide each loss by the number of elements in its
corresponding observation specification.

Loss = ∑
i = 1

No 1
Moi

Lossoi

For example, if the observation specification for the environment is defined by
[rlNumericSpec([10.1]) rlNumericSpec([4,1])], then No is 2, Mo1 is 10, and
Mo2 is 4.

ii Train the reward function. If the corresponding LearnRate optimizer option is 0 or a
ground-truth custom reward function is defined, skip this step.

• Use a half-mean loss for an rlContinuousDeterministicRewardFunction object
and a maximum likelihood loss for an rlContinuousStochasticRewardFunction
object.

iii Train the is-done function. If the corresponding LearnRate optimizer option is 0 or a
ground-truth custom is-done function is defined, skip this step.

• Use a weighted cross-entropy loss function. In general, the terminal conditions
(isdone = 1) occur much less frequently than nonterminal conditions (isdone =
0). To deal with the heavily imbalanced data, use the following weights and loss
function.

w0 = 1
∑i = 1

M 1− Ti
, w1 = 1

∑i = 1
M Ti

Loss = −1
M ∑

i = 1

M
w0TilnYi + w1 1− Ti ln 1− Yi

Here, M is the mini-batch size, Ti is a target, and Yi is the output from the reward
network for the ith sample in the batch. Ti = 1 when isdone is 1 and Ti = 0 when
isdone is 0.

b Generate samples using the trained environment model. The following figure shows an
example of two roll-out trajectories with a horizon of two.
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i Increase the horizon based on the horizon update settings defined in the
ModelRolloutOptions object.

ii Randomly sample a batch of NR observations from the real experience buffer. To specify
NR, use theModelRolloutOptions.NumRollout option.

iii For each horizon step:

• Randomly divide the observations into NM groups, where NM is the number of
transition models, and assign each group to a transition model.

• For each observation oi, generate an action ai using the exploration policy defined by
the ModelRolloutOptions.NoiseOptions object. If
ModelRolloutOptions.NoiseOptions is empty, use the exploration policy of the
base agent.

• For each observation-action pair, predict the next observation o'2 using the
corresponding transition model.

• Using the environment model reward function, predict the reward value ri based on
the observation, action, and next observation using.

• Using the environment model is-done function, predict the termination signal donei
based on the observation, action, and next observation.

• Add the experience (oi,ai,ri,o'i,donei) to the generated experience buffer.
• For the next horizon step, substitute each observation with the predicted next

observation.
4 For each step in each training episode:

a Sample a mini-batch of M total experiences from the real experience buffer and the
generated experience buffer. To specify M, use the MiniBatchSize option.
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• Sample Nreal = ⌈M·R⌉ samples from the real experience buffer. To specify R, use the
RealRatio option.

• Nmodel = M – Nreal samples from the generated experience buffer.
b Train the base agent using the sampled mini-batch of data by following the update rule of the

base agent. For more information, see the corresponding SAC on page 3-55, TD3 on page 3-
33, DDPG on page 3-29, or DQN on page 3-21 training algorithm.

Tips
• MBPO agent can be more sample efficient than model-free agents because the model can generate

large sets of diverse experiences. However, MBPO agents require much more computational time
than model-free agents, because they must train the environment model and generate samples in
addition to training the base agent.

• To overcome modeling uncertainty, it is best practice to use multiple environment transition
models.

• If they are available, it is best to use known ground-truth reward and is-done functions.
• It is better to generate a large number of trajectories (thousands or tens of thousands). Doing so,

generates many samples, which reduces the likelihood of selecting the same sample multiple
times in a training episode.

• Since modeling errors can accumulate, it is better to use a shorter horizon when generating
samples. A shorter horizon is usually enough to generate diverse experiences.

• In general, an agent created using rlMBPOAgent is not suitable for environments with image
observations.

• When using a SAC base agent, taking more gradient steps (defined by the
NumGradientStepsPerUpdate SAC agent option) makes the MBPO agent more sample efficient.
However, doing so increases the computational time.

• The MBPO implementation in rlMBPOAgent is based on the algorithm in the original paper [1]
but with the differences shown in the following table.

Original Paper rlMBPOAgent
Generates samples at each environment step Generate samples at the beginning of each

training episode
Trains actor and critic using only generated
samples

Trains actor and critic using both real data
and generated data

Uses stochastic environment models Uses either stochastic or deterministic
environment models

Uses SAC agents Can use SAC, DQN, DDPG, and TD3 agents

References
[1] Janner, Michael, Justin Fu, Marvin Zhang, and Sergey Levine, "When to trust your model: Model-

based policy optimization." ArXiv: 1906.08253 [cs], June 19, 2019. https://arxiv.org/abs/
1906.08253.

See Also
rlMBPOAgent | rlMBPOAgentOptions | rlNeuralNetworkEnvironment
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Related Examples
• “Train MBPO Agent to Balance Cart-Pole System” on page 5-361
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Create Custom Reinforcement Learning Agents
To implement your own custom reinforcement learning algorithms, you can create a custom agent by
creating a subclass of a custom agent class. You can then train and simulate this agent in MATLAB
and Simulink environments. For more information about creating classes in MATLAB, see “User-
Defined Classes”.

Create Template Class
To define your custom agent, first create a class that is a subclass of the rl.agent.CustomAgent
class. As an example, this topic describes the custom LQR agent trained in “Train Custom LQR
Agent” on page 5-327. As a starting point for your own agent, you can open and modify this custom
agent class. To add the example files to the MATLAB path and open the file, at the MATLAB command
line, type the following code.

addpath(fullfile(matlabroot,'examples','rl','main'));
edit LQRCustomAgent.m

After saving the class to your own working folder, you can remove the example files from the path.

rmpath(fullfile(matlabroot,'examples','rl','main'));

This class has the following class definition, which indicates the agent class name and the associated
abstract agent.

classdef LQRCustomAgent < rl.agent.CustomAgent

To define your agent, you must specify the following:

• Agent properties
• Constructor function
• A critic that estimates the discounted long-term reward (if required for learning)
• An actor that selects an action based on the current observation (if required for learning)
• Required agent methods
• Optional agent methods

Agent Properties
In the properties section of the class file, specify any parameters necessary for creating and
training the agent. These parameters can include:

• Discount factor for discounting future rewards
• Configuration parameters for exploration models, such as noise models or epsilon-greedy

exploration
• Experience buffers for using replay memory
• Mini-batch sizes for sampling from the experience buffer
• Number of steps to look ahead during training

For more information on potential agent properties, see the option objects for the built-in
Reinforcement Learning Toolbox agents.
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The rl.Agent.CustomAgent class already includes properties for the agent sample time
(SampleTime) and the action and observation specifications (ActionInfo and ObservationInfo,
respectively).

The custom LQR agent defines the following agent properties.

properties
    % Q
    Q

    % R
    R

    % Feedback gain
    K

    % Discount factor
    Gamma = 0.95

    % Critic
    Critic

    % Buffer for K
    KBuffer  
    % Number of updates for K
    KUpdate = 1

    % Number for estimator update
    EstimateNum = 10
end

properties (Access = private)
    Counter = 1
    YBuffer
    HBuffer 
end

Constructor Function
To create your custom agent, you must define a constructor function that:

• Defines the action and observation specifications. For more information about creating these
specifications, see rlNumericSpec and rlFiniteSetSpec.

• Creates actor and critic as required by your training algorithm. For more information, see “Create
Policies and Value Functions” on page 4-2.

• Configures agent properties.
• Calls the constructor of the base abstract class.

For example, the LQRCustomAgent constructor defines continuous action and observation spaces
and creates a critic. The createCritic function is an optional helper function that defines the critic.

function obj = LQRCustomAgent(Q,R,InitialK)
    % Check the number of input arguments
    narginchk(3,3);
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    % Call the abstract class constructor
    obj = obj@rl.agent.CustomAgent();

    % Set the Q and R matrices
    obj.Q = Q;
    obj.R = R;

    % Define the observation and action spaces
    obj.ObservationInfo = rlNumericSpec([size(Q,1),1]);
    obj.ActionInfo = rlNumericSpec([size(R,1),1]);

    % Create the critic
    obj.Critic = createCritic(obj);

    % Initialize the gain matrix
    obj.K = InitialK;

    % Initialize the experience buffers
    obj.YBuffer = zeros(obj.EstimateNum,1);
    num = size(Q,1) + size(R,1);
    obj.HBuffer = zeros(obj.EstimateNum,0.5*num*(num+1));
    obj.KBuffer = cell(1,1000);
    obj.KBuffer{1} = obj.K;
end

Actor and Critic
If your learning algorithm uses a critic to estimate the long-term reward, an actor for selecting an
action, or both, you must add these as agent properties. You must then create these objects when you
create your agent; that is, in the constructor function. For more information on creating actors and
critics, see “Create Policies and Value Functions” on page 4-2.

For example, the custom LQR agent uses a critic, stored in its Critic property, and no actor. The
critic creation is implemented in the createCritic helper function, which is called from the
LQRCustomAgent constructor.
function critic = createCritic(obj)
    nQ = size(obj.Q,1);
    nR = size(obj.R,1);
    n = nQ+nR;
    w0 = 0.1*ones(0.5*(n+1)*n,1);
    critic = rlQValueFunction({@(x,u) computeQuadraticBasis(x,u,n),w0},...
        getObservationInfo(obj),getActionInfo(obj));
    critic.Options.GradientThreshold = 1;
end

In this case, the critic is an rlQValueFunction object. To create this object, you must specify the
handle to a custom basis function, in this case the computeQuadraticBasis function. For more
information, see “Train Custom LQR Agent” on page 5-327.

Required Functions
To create a custom reinforcement learning agent you must define the following implementation
functions. To call these functions in your own code, use the wrapper methods from the abstract base
class. For example, to call getActionImpl, use getAction. The wrapper methods have the same
input and output arguments as the implementation methods.
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Function Description
getActionImpl Selects an action by evaluating the agent policy for a given

observation
getActionWithExplorationImpl Selects an action using the exploration model of the agent
learnImpl Learns from the current experiences and returns an action

with exploration

Within your implementation functions, to evaluate your actor and critic, you can use the getValue,
getAction, and getMaxQValue functions.

• To evaluate an rlValueFunction critic, you need only the observation input, and you can obtain
the value of the current observation V using the following syntax.

V = getValue(Critic,Observation);
• To evaluate an rlQValueFunction critic you need both observation and action inputs, and you

can obtain the value of the current state-action Q using the following syntax.

Q = getValue(Critic,[Observation,Action]);
• To evaluate an rlVectorQValueFunction critic you need only the observation input, and you

can obtain the value of the current observation Q for all possible discrete actions using the
following syntax.

Q = getValue(Critic,Observation);
• For a discrete action space rlQValueFunction critic, obtain the maximum Q state-action value

function Q for all possible discrete actions using the following syntax.

[MaxQ,MaxActionIndex] = getMaxQValue(Critic,Observation);
• To evaluate an actor, obtain the action A using the following syntax.

A = getAction(Actor,Observation);

For each of these cases, if your actor or critic network uses a recurrent neural network, the functions
can also return the current values of the network state after obtaining the corresponding network
output.

getActionImpl Function

The getActionImpl function is evaluates the policy of your agent and selects an action. This
function must have the following signature, where obj is the agent object, Observation is the
current observation, and action is the selected action.

function action = getActionImpl(obj,Observation)

For the custom LQR agent, you select an action by applying the u=-Kx control law.

function action = getActionImpl(obj,Observation)
    % Given the current state of the system, return an action
    action = -obj.K*Observation{:};
end

getActionWithExplorationImpl Function

The getActionWithExplorationImpl function selects an action using the exploration model of
your agent. Using this function you can implement algorithms such as epsilon-greedy exploration.
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This function must have the following signature, where obj is the agent object, Observation is the
current observation, and action is the selected action.

function action = getActionWithExplorationImpl(obj,Observation)

For the custom LQR agent, the getActionWithExplorationImpl function adds random white
noise to an action selected using the current agent policy.

function action = getActionWithExplorationImpl(obj,Observation)
    % Given the current observation, select an action
    action = getAction(obj,Observation);
    
    % Add random noise to the action
    num = size(obj.R,1);
    action = action + 0.1*randn(num,1);
end

learnImpl Function

The learnImpl function defines how the agent learns from the current experience. This function
implements the custom learning algorithm of your agent by updating the policy parameters and
selecting an action with exploration. This function must have the following signature, where obj is
the agent object, exp is the current agent experience, and action is the selected action.

function action = learnImpl(obj,exp)

The agent experience is the cell array exp = {state,action,reward,nextstate,isdone}.

• state is the current observation.
• action is the current action.
• reward is the current reward.
• nextState is the next observation.
• isDone is a logical flag indicating that the training episode is complete.

For the custom LQR agent, the critic parameters are updated every N steps.

function action = learnImpl(obj,exp)
    % Parse the experience input
    x = exp{1}{1};
    u = exp{2}{1};
    dx = exp{4}{1};            
    y = (x'*obj.Q*x + u'*obj.R*u);
    num = size(obj.Q,1) + size(obj.R,1);

    % Wait N steps before updating the critic parameters
    N = obj.EstimateNum;
    h1 = computeQuadraticBasis(x,u,num);
    h2 = computeQuadraticBasis(dx,-obj.K*dx,num);
    H = h1 - obj.Gamma* h2;
    if obj.Counter<=N
        obj.YBuffer(obj.Counter) = y;
        obj.HBuffer(obj.Counter,:) = H;
        obj.Counter = obj.Counter + 1;
    else
        % Update the critic parameters based on the batch of
        % experiences
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        H_buf = obj.HBuffer;
        y_buf = obj.YBuffer;
        theta = (H_buf'*H_buf)\H_buf'*y_buf;
        obj.Critic = setLearnableParameters(obj.Critic,{theta});
        
        % Derive a new gain matrix based on the new critic parameters
        obj.K = getNewK(obj);
        
        % Reset the experience buffers
        obj.Counter = 1;
        obj.YBuffer = zeros(N,1);
        obj.HBuffer = zeros(N,0.5*num*(num+1));    
        obj.KUpdate = obj.KUpdate + 1;
        obj.KBuffer{obj.KUpdate} = obj.K;
    end

    % Find and return an action with exploration
    action = getActionWithExploration(obj,exp{4});
end

Optional Functions
Optionally, you can define how your agent is reset at the start of training by specifying a resetImpl
function with the following function signature, where obj is the agent object. Using this function, you
can set the agent into a known or random condition before training.

function resetImpl(ob)

Also, you can define any other helper functions in your custom agent class as required. For example,
the custom LQR agent defines a createCritic function for creating the critic and a getNewK
function that derives the feedback gain matrix from the trained critic parameters.

Create Custom Agent
After you define your custom agent class, create an instance of it in the MATLAB workspace. For
example, to create the custom LQR agent, define the Q, R, and InitialK values and call the
constructor function.

Q = [10,3,1;3,5,4;1,4,9]; 
R = 0.5*eye(3);
K0 = place(A,B,[0.4,0.8,0.5]);
agent = LQRCustomAgent(Q,R,K0);

After validating the environment object, you can use it to train a reinforcement learning agent. For an
example that trains the custom LQR agent, see “Train Custom LQR Agent” on page 5-327.

See Also
train

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policies and Value Functions” on page 4-2
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• “Train Reinforcement Learning Agents” on page 5-3
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Define Policies and Value Functions

• “Create Policies and Value Functions” on page 4-2
• “Import Neural Network Models” on page 4-13
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Create Policies and Value Functions
A reinforcement learning policy is a mapping from the current environment observation to a
probability distribution of the actions to be taken. During training, the agent tunes the parameters of
its policy to maximize the expected cumulative long-term reward.

Reinforcement learning agents estimate policies and value functions using function approximators
called actors and critics, respectively. The actor represents the policy that selects the best action to
take, based on the current observation. The critic represents the value function that estimates the
expected cumulative long-term reward for the current policy.

Before creating an agent, you must create the actor and critic using approximation models such as
deep neural networks, linear basis functions, or lookup tables. The type of function approximators
and models you use depends on the type of agent that you want to create.

For more information on agents, see “Reinforcement Learning Agents” on page 3-2.

Actors and Critics
The Reinforcement Learning Toolbox software supports the following types of actors and critics:

• V(S|θV) — Critics that estimate the expected cumulative long-term reward based on a given
observation S. You can create these critics using rlValueFunction.

• Q(S,A|θQ) — Critics that estimate the expected cumulative long-term reward for a given discrete
action A and a given observation S. You can create these critics using rlQValueFunction.

• Qi(S,Ai|θQ) — Multi-output critics that estimate the expected cumulative long-term reward for all
possible discrete actions Ai given the observation S. You can create these critics using
rlVectorQValueFunction.

• μ(S|θμ) — Actors with a continuous action space that select an action deterministically based on a
given observation S. You can create these actors using rlContinuousDeterministicActor.

• μ(S|θμ) — Actors that select an action stochastically (the action is sampled from a probability
distribution) based on a given observation S. You can create these actors using either
rlDiscreteCategoricalActor (for discrete action spaces) or rlContinuousGaussianActor
(for continuous action spaces).

Each approximator uses a set of parameters (θV, θQ, θμ), which are computed during the learning
process.
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For systems with a limited number of discrete observations and discrete actions, you can store value
functions in a lookup table. For systems that have many discrete observations and actions and for
observation and action spaces that are continuous, storing the observations and actions is
impractical. For such systems, you can represent your actors and critics using deep neural networks
or custom (linear in the parameters) basis functions.

The following table summarizes the way in which you can use the six approximator objects available
with Reinforcement Learning Toolbox software, depending on the action and observation spaces of
your environment, and on the approximation model and agent that you want to use.
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How Function Approximators (Actors or Critics) are Used in Agents

Approximator (Actor or Critic) Supported
Model

Observation
Space

Action
Space

Supported
Agents

Value function critic V(S), which you
create using

rlValueFunction

Table Discrete Not
applicable

PG, AC, PPO,
TRPO

Deep neural
network or
custom basis
function

Discrete or
continuous

Not
applicable

PG, AC, PPO

Q-value function critic, Q(S,A) which
you create using

rlQValueFunction

Table Discrete Discrete Q, DQN,
SARSA

Deep neural
network or
custom basis
function

Discrete or
continuous

Discrete Q, DQN,
SARSA

Continuous DDPG, TD3,
SAC

Multi-output Q-value function critic
with a discrete action space Q(S,A),
which you create using

rlVectorQValueFunction

Deep neural
network or
custom basis
function

Discrete or
continuous

Discrete Q, DQN,
SARSA

Deterministic policy actor with a
continuous action space π(S), which
you create using

rlContinuousDeterministicActo
r

Deep neural
network or
custom basis
function

Discrete or
continuous

Continuous DDPG, TD3

Stochastic policy actor with a discrete
action space π(S), which you create
using

rlDiscreteCategoricalActor

Deep neural
network or
custom basis
function

Discrete or
continuous

Discrete PG, AC, PPO,
TRPO

Stochastic policy actor with a
continuous action space π(S), which
you create using

rlContinuousGaussianActor

Deep neural
network

Discrete or
continuous

Continuous PG, AC, PPO,
TRPO, SAC

You can configure the actor and critic optimization options using the rlOptimizerOptions object
within an agent option object.

For more information on agents, see “Reinforcement Learning Agents” on page 3-2.

Table Models
Approximators (critics) based on lookup tables models are appropriate for environments with a
limited number of discrete observations and actions. You can create two types of lookup tables:

• Value tables, which store rewards for corresponding observations
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• Q-tables, which store rewards for corresponding observation-action pairs

To create a table based critic, first create a value table or Q-table using the rlTable function. Then
use the table object as input argument for either rlValueFunction or rlQValueFunction to
create the approximator object.

Neural Network Models
You can create actor and critic function approximators using deep neural networks models. Doing so
uses Deep Learning Toolbox software features.

Network Input and Output Dimensions

The dimensions of the network input and output layers for your actor and critic must match the
dimension of the corresponding environment observation and action channels, respectively. To obtain
the action and observation specifications from the environment env, use the getActionInfo and
getObservationInfo functions, respectively.

actInfo = getActionInfo(env);
obsInfo = getObservationInfo(env);

Access the Dimensions property of each channel. For example, get the size of the first environment
and action channel:

actSize = actInfo(1).Dimensions;
obsSize = obsInfo(1).Dimensions;

In general actSize and obsSize are row vectors whose elements are the lengths of the
corresponding dimensions. For example, if the first observation channel is a 256-by-256 RGB image,
actSize is the vector [256 256 3]. To calculate the total number of dimension of the channel, use
prod.For example, assuming the environment has only one observation channel:

obsDimensions = prod(obsInfo.Dimensions);

For rlVectorQValueFunction critics and rlDiscreteCategoricalActor actors, you need to
obtain the number of possible elements of the action set. You can do so by accessing the Elements
property of the action channel. For example, assuming the environment has only one action channel:

actNumElements = numel(actInfo.Elements);

Networks for value function critics (such as the ones used in AC, PG, PPO or TRPO agents) must take
only observations as inputs and must have a single scalar output. For these networks, the dimensions
of the input layers must match the dimensions of the environment observation channels. For more
information, see rlValueFunction.

Networks for single-output Q-value function critics (such as the ones used in Q, DQN, SARSA, DDPG,
TD3, and SAC agents) must take both observations and actions as inputs, and must have a single
scalar output. For these networks, the dimensions of the input layers must match the dimensions of
the environment channels for both observations and actions. For more information, see
rlQValueFunction.

Networks for multi-output Q-value function critics (such as those used in Q, DQN, and SARSA agents)
take only observations as inputs and must have a single output layer with output size equal to the
number of possible discrete actions. For these networks the dimensions of the input layers must
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match the dimensions of the environment observations channels. For more information, see
rlVectorQValueFunction.

For actor networks, the dimensions of the input layers must match the dimensions of the environment
observation channels and the dimension of the output layer must be as follows.

• Networks used in actors with a discrete action space (such as the ones in PG, AC, and PPO agents)
must have a single output layer with an output size equal to the number of possible discrete
actions. For more information, see rlDiscreteCategoricalActor.

• Networks used in deterministic actors with a continuous action space (such as the ones in DDPG
and TD3 agents) must have a single output layer with an output size matching the dimension of
the action space defined in the environment action specification. For more information, see
rlContinuousDeterministicActor.

• Networks used in stochastic actors with a continuous action space (such as the ones in PG, AC,
PPO, and SAC agents) must have a two output layers each with as many elements as the
dimension of the action space, as defined in the environment specification. One output layer must
produce the mean values (which must be scaled to the output range of the action), and the other
must produce the standard deviations of the actions (which must be non-negative). For more
information, see rlContinuousGaussianActor.

Deep Neural Networks

Deep neural networks consist of a series of interconnected layers. You can specify a deep neural
network as one of the following:

• Array of Layer objects
• layerGraph object
• DAGNetwork object
• SeriesNetwork object
• dlnetwork object

Note Among the different network objects, dlnetwork is preferred, since it has built-in validation
checks and supports automatic differentiation. If you pass another network object as an input
argument, it is internally converted to a dlnetwork object. However, best practice is to convert other
network objects to dlnetwork explicitly before using it to create a critic or an actor for a
reinforcement learning agent. You can do so using dlnet=dlnetwork(net), where net is any
neural network object from the Deep Learning Toolbox. The resulting dlnet is the dlnetwork object
that you use for your critic or actor. This practice allows a greater level of insight and control for
cases in which the conversion is not straightforward and might require additional specifications.

Typically, you build your neural network by stacking together a number of layers in an array of Layer
objects, possibly adding these arrays to a layerGraph object, and then converting the final result to
a dlnetwork object.

For agents that need multiple input or output layers, you create an array of Layer objects for each
input path (observations or actions) and for each output path (estimated rewards or actions). You
then add these arrays to a layerGraph object and connect them paths together using the
connectLayers function.
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You can also create your deep neural network using the Deep Network Designer app. For an
example, see “Create Agent Using Deep Network Designer and Train Using Image Observations” on
page 5-103.

The following table lists some common deep learning layers used in reinforcement learning
applications. For a full list of available layers, see “List of Deep Learning Layers”.

Layer Description
featureInputLayer Inputs feature data and applies normalization
imageInputLayer Inputs vectors and 2-D images and applies normalization.
sigmoidLayer Applies a sigmoid function to the input such that the output

is bounded in the interval (0,1).
tanhLayer Applies a hyperbolic tangent activation layer to the input.
reluLayer Sets any input values that are less than zero to zero.
fullyConnectedLayer Multiplies the input vector by a weight matrix, and add a

bias vector.
softmaxLayer Applies a softmax function layer to the input, normalizing it

to a probability distribution.
convolution2dLayer Applies sliding convolutional filters to the input.
additionLayer Adds the outputs of multiple layers together.
concatenationLayer Concatenates inputs along a specified dimension.
sequenceInputLayer Provides inputs sequence data to a network.
lstmLayer Applies a Long Short-Term Memory layer to the input.

Supported for DQN and PPO agents.

The bilstmLayer and batchNormalizationLayer layers are not supported for reinforcement
learning.

The Reinforcement Learning Toolbox software provides the following layers, which contain no
tunable parameters (that is, parameters that change during training).

Layer Description
scalingLayer Applies a linear scale and bias to an input array. This layer

is useful for scaling and shifting the outputs of nonlinear
layers, such as tanhLayer and sigmoidLayer.

quadraticLayer Creates a vector of quadratic monomials constructed from
the elements of the input array. This layer is useful when
you need an output that is some quadratic function of its
inputs, such as for an LQR controller.

softplusLayer Implements the softplus activation Y = log(1 + eX), which
ensures that the output is always positive. This function is a
smoothed version of the rectified linear unit (ReLU).

You can also create your own custom layers. For more information, see “Define Custom Deep
Learning Layers”.

When you create a deep neural network, it is good practice to specify names for the first layer of each
input path and the final layer of the output path.
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The following code creates and connects the following input and output paths:

• An observation input path, observationPath, with the first layer named 'observation'.
• An action input path, actionPath, with the first layer named 'action'.
• An estimated value function output path, commonPath, which takes the outputs of

observationPath and actionPath as inputs. The final layer of this path is named 'output'.

observationPath = [
    featureInputLayer(4,'Normalization','none','Name','myobs')
    fullyConnectedLayer(24,'Name','CriticObsFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(24,'Name','CriticObsFC2')];

actionPath = [
    featureInputLayer(1,'Normalization','none','Name','myact')
    fullyConnectedLayer(24,'Name','CriticActFC1')];

commonPath = [
    additionLayer(2,'Name','add')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(1,'Name','output')];

criticNetwork = layerGraph(observationPath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);    
criticNetwork = connectLayers(criticNetwork,'CriticObsFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActFC1','add/in2');

criticNetwork = dlnetwork(criticNetwork);

For all observation and action input paths, you must specify a featureInputLayer as the first layer
in the path, with a number of input neurons equal to the number of dimensions of the corresponding
environment channel.

You can view the structure of your deep neural network using the plot function.

plot(layerGraph(criticNetwork))
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Since the output of a network in an rlDiscreteCategoricalActor actors must represent the
probability of executing each possible action, the software automatically adds a softmaxLayer as a
final output layer if you do not specify it explicitly. When computing the action, the actor then
randomly samples the distribution to return an action.

Determining the number, type, and size of layers for your deep neural network can be difficult and is
application dependent. However, the most critical component in deciding the characteristics of the
function approximator is whether it is able to approximate the optimal policy or discounted value
function for your application, that is, whether it has layers that can correctly learn the features of
your observation, action, and reward signals.

Consider the following tips when constructing your network.

• For continuous action spaces, bound actions with a tanhLayer followed by a ScalingLayer to
scale the action to desired values, if necessary.

• Deep dense networks with reluLayer layers can be fairly good at approximating many different
functions. Therefore, they are often a good first choice.

• Start with the smallest possible network that you think can approximate the optimal policy or
value function.

• When you approximate strong nonlinearities or systems with algebraic constraints, adding more
layers is often better than increasing the number of outputs per layer. In general, the ability of the
approximator to represent more complex (compositional) functions grows only polynomially in the
size of the layers, but grows exponentially with the number of layers. In other words, more layers
allow approximating more complex and nonlinear compositional functions, although this generally
requires more data and longer training times. Given a total number of neurons and comparable
approximation tasks, networks with fewer layers can require exponentially more units to
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successfully approximate the same class of functions, and might fail to learn and generalize
correctly.

• For on-policy agents (the ones that learn only from experience collected while following the
current policy), such as AC and PG agents, parallel training works better if your networks are
large (for example, a network with two hidden layers with 32 nodes each, which has a few
hundred parameters). On-policy parallel updates assume each worker updates a different part of
the network, such as when they explore different areas of the observation space. If the network is
small, the worker updates can correlate with each other and make training unstable.

Create and Configure Actors and Critics from a Neural Network

To create a critic from your deep neural network, use an rlValueFunction, rlQValueFunction or
(whenever possible) an rlVectorQValueFunction object. To create a deterministic actor for a
continuous action space from your deep neural network, use an
rlContinuousDeterministicActor object. To create a stochastic actor from your deep neural
network use either an rlDiscreteCategoricalActor or an rlContinuousGaussianActor
object. To configure the learning rate and optimization used by the actor or critic, use an optimizer
object within an agent option object.

For example, create a Q-value function object for the critic network criticNetwork. Then create a
the critic optimizer object criticOpts specifying a learning rate of 0.02 and a gradient threshold of
1.
critic = rlQValueFunction(criticNetwork,obsInfo,actInfo,...
        'Observation',{'observation'},'Action',{'action'});

criticOpts = rlOptimizerOptions('LearnRate',0.02,...
                                'GradientThreshold',1);

Then create an agent option object, and set the CriticOptimizerOptions property of the agent
option object to criticOpts. When finally you create the agent, pass the agent option object as a
last input argument to the agent constructor function.

When you create your deep neural network and configure your actor or critic, consider using the
following approach as a starting point.

1 Start with the smallest possible network and a high learning rate (0.01). Train this initial
network to see if the agent converges quickly to a poor policy or acts in a random manner. If
either of these issues occur, rescale the network by adding more layers or more outputs on each
layer. Your goal is to find a network structure that is just big enough, does not learn too fast, and
shows signs of learning (an improving trajectory of the reward graph) after an initial training
period.

2 Once you settle on a good network architecture, a low initial learning rate can allow you to see if
the agent is on the right track, and help you check that your network architecture is satisfactory
for the problem. A low learning rate makes tuning parameters easier, especially for difficult
problems.

Also, consider the following tips when configuring your deep neural network agent.

• Be patient with DDPG and DQN agents, since they might not learn anything for some time during
the early episodes, and they typically show a dip in cumulative reward early in the training
process. Eventually, they can show signs of learning after the first few thousand episodes.

• For DDPG and DQN agents, promoting exploration of the agent is critical.
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• For agents with both actor and critic networks, set the initial learning rates of both actor and
critic to the same value. However, for some problems, setting the critic learning rate to a higher
value than that of the actor can improve learning results.

Recurrent Neural Networks

When creating actors or critics for use with any agent except Q and SARSA, you can use recurrent
neural networks (RNN). These networks are deep neural networks with a sequenceInputLayer
input layer and at least one layer that has hidden state information, such as an lstmLayer. They can
be especially useful when the environment has states that cannot be included in the observation
vector.

For agents that have both actor and critic, you must either use an RNN for both of them, or not use
an RNN for any of them. You cannot use an RNN only for the critic or only for the actor.

When using PG agents, the learning trajectory length for the RNN is the whole episode. For an AC
agent, the NumStepsToLookAhead property of its options object is treated as the training trajectory
length. For a PPO agent, the trajectory length is the MiniBatchSize property of its options object.

For DQN, DDPG, SAC and TD3 agents, you must specify the length of the trajectory training as an
integer greater than one in the SequenceLength property of their options object.

Note that code generation is not supported for continuous action space PG, AC, PPO and TRPO
agents, and SAC agents using a recurrent neural network (RNN), or for any agent having multiple
input paths and containing an RNN in any of the paths.

For more information and examples on policies and value functions, see rlValueFunction,
rlQValueFunction, rlVectorQValueFunction, rlContinuousDeterministicActor,
rlDiscreteCategoricalActor, and rlContinuousGaussianActor.

Custom Basis Function Models
Custom (linear in the parameters) basis function approximation models have the form f = W'B,
where W is a weight array and B is the column vector output of a custom basis function that you must
create. The learnable parameters of a linear basis function are the elements of W.

For value function critics, (such as the ones used in AC, PG or PPO agents), f is a scalar value, so W
must be a column vector with the same length as B, and B must be a function of the observation. For
more information and examples, see rlValueFunction.

For single-output Q-value function critics, (such as the ones used in Q, DQN, SARSA, DDPG, TD3, and
SAC agents), f is a scalar value, so W must be a column vector with the same length as B, and B must
be a function of both the observation and action. For more information and examples, see
rlQValueFunction.

For multi-output Q-value function critics with discrete action spaces, (such as those used in Q, DQN,
and SARSA agents), f is a vector with as many elements as the number of possible actions. Therefore
W must be a matrix with as many columns as the number of possible actions and as many rows as the
length of B. B must be only a function of the observation. For more information and examples, see
rlVectorQValueFunction.

• For deterministic actors with a continuous action space (such as the ones in DDPG, and TD3
agents), the dimensions of f must match the dimensions of the agent action specification, which is
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either a scalar or a column vector. For more information and examples, see
rlContinuousDeterministicActor.

• For stochastic actors with a discrete action space (such as the ones in PG, AC, and PPO agents), f
must be column vector with length equal to the number of possible discrete actions. The output of
the actor is softmax(f), which represents the probability of selecting each possible action. For
more information and examples, see rlDiscreteCategoricalActor.

• For stochastic actors with continuous action spaces cannot rely on custom basis functions (they
can only use neural network approximators, due to the need to enforce positivity for the standard
deviations). For more information and examples, see rlContinuousGaussianActor.

For any actor, W must have as many columns as the number of elements in f, and as many rows as the
number of elements in B. B must be only a function of the observation.

For an example that trains a custom agent that uses a linear basis function, see “Train Custom LQR
Agent” on page 5-327.

Create an Agent
Once you create your actor and critic, you can create a reinforcement learning agent that uses them.
For example, create a PG agent using a given actor and critic (baseline) network.

agentOpts = rlPGAgentOptions('UseBaseline',true);
agent = rlPGAgent(actor,baseline,agentOpts);

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

You can obtain the actor and critic from an existing agent using getActor and getCritic,
respectively.

You can also set the actor and critic of an existing agent using setActor and setCritic,
respectively. The input and output layers of the actor and critic must match the observation and
action specifications of the original agent.

See Also

More About
• “Reinforcement Learning Agents” on page 3-2
• “Import Neural Network Models” on page 4-13
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Import Neural Network Models
To create function approximators for reinforcement learning, you can import pretrained deep neural
networks or deep neural network layer architectures using the Deep Learning Toolbox network
import functionality. You can import:

• Open Neural Network Exchange (ONNX) models, which require the Deep Learning Toolbox
Converter for ONNX Model Format support package software. For more information,
importONNXLayers.

• TensorFlow-Keras networks, which require Deep Learning Toolbox Converter for TensorFlow
Models support package software. For more information, see importKerasLayers.

• Caffe convolutional networks, which require Deep Learning Toolbox Importer for Caffe Models
support package software. For more information, see importCaffeLayers.

After you import a deep neural network, you can create an actor or critic object, such as
rlQValueFunction or rlDiscreteCategoricalActor.

When you import deep neural network architectures, consider the following.

• Imported architectures must have a single input layer and a single output layer. Therefore,
importing entire critic networks with observation and action input layers is not supported.

• The dimensions of the imported network architecture input and output layers must match the
dimensions of the corresponding action, observation, or reward dimensions for your environment.

• After importing the network architecture, you must set the names of the input and output layers to
match the names of the corresponding action and observation specifications.

For more information on the deep neural network architectures supported for reinforcement
learning, see “Create Policies and Value Functions” on page 4-2.

Import Actor and Critic for Image Observation Application
As an example, assume that you have an environment with a 50-by-50 grayscale image observation
signal and a continuous action space. To train a policy gradient agent, you require the following
function approximators, both of which must have a single 50-by-50 image input observation layer and
a single scalar output value.

• Actor — Selects an action value based on the current observation
• Critic — Estimates the expected long-term reward based on the current observation

Also, assume that you have the following network architectures to import:

• A deep neural network architecture for the actor with a 50-by-50 image input layer and a scalar
output layer, which is saved in the ONNX format (criticNetwork.onnx).

• A deep neural network architecture for the critic with a 50-by-50 image input layer and a scalar
output layer, which is saved in the ONNX format (actorNetwork.onnx).

To import the critic and actor networks, use the importONNXLayers function without specifying an
output layer.
criticNetwork = importONNXLayers('criticNetwork.onnx');
actorNetwork = importONNXLayers('actorNetwork.onnx');
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These commands generate a warning, which states that the network is trainable until an output layer
is added. When you use an imported network to create an actor or critic, Reinforcement Learning
Toolbox software automatically adds an output layer for you.

After you import the networks, create the actor and critic function approximators. To do so, first
obtain the observation and action specifications from the environment.
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create the critic, specifying the name of the input layer of the critic network as the observation
name. Since the critic network has a single observation input and a single action output, use a value-
function.
critic = rlValueFunction(criticNetwork,obsInfo,...
             'ObservationInputNames',{criticNetwork.Layers(1).Name});

Create the actor, specifying the name of the input layer of the actor network as the observation name
and the output layer of the actor network as the observation name. Since the actor network has a
single scalar output, use a continuous deterministic actor.
actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo,...
            'ObservationInputNames',{actorNetwork.Layers(1).Name});

You can then:

• Create an agent using this actor and critic. For more information, see “Reinforcement Learning
Agents” on page 3-2.

• Set the actor and critic in an existing agent using setActor and setCritic, respectively.

See Also

More About
• “Create Policies and Value Functions” on page 4-2
• “Reinforcement Learning Agents” on page 3-2
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Train and Validate Agents

• “Train Reinforcement Learning Agents” on page 5-3
• “Train Agents Using Parallel Computing and GPUs” on page 5-8
• “Design and Train Agent Using Reinforcement Learning Designer” on page 5-12
• “Specify Training Options in Reinforcement Learning Designer” on page 5-16
• “Specify Simulation Options in Reinforcement Learning Designer” on page 5-21
• “Train DQN Agent to Balance Cart-Pole System” on page 5-24
• “Train PG Agent to Balance Cart-Pole System” on page 5-30
• “Train AC Agent to Balance Cart-Pole System” on page 5-35
• “Train PG Agent with Baseline to Control Double Integrator System” on page 5-41
• “Train DDPG Agent to Control Double Integrator System” on page 5-47
• “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-53
• “Train DDPG Agent to Swing Up and Balance Pendulum” on page 5-60
• “Train DDPG Agent to Swing Up and Balance Cart-Pole System” on page 5-67
• “Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal” on page 5-74
• “Train Reinforcement Learning Agents To Control Quanser QUBE™ Pendulum” on page 5-81
• “Run SIL and PIL Verification for Reinforcement Learning” on page 5-89
• “Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation” on page 5-95
• “Create Agent Using Deep Network Designer and Train Using Image Observations” on page 5-103
• “Train AC Agent to Balance Cart-Pole System Using Parallel Computing” on page 5-116
• “Train DDPG Agent to Control Flying Robot” on page 5-121
• “Train PPO Agent to Land Rocket” on page 5-127
• “Train Multiple Agents to Perform Collaborative Task” on page 5-133
• “Train Multiple Agents for Area Coverage” on page 5-141
• “Train Multiple Agents for Path Following Control” on page 5-149
• “Train DDPG Agent for Adaptive Cruise Control” on page 5-158
• “Train DQN Agent for Lane Keeping Assist” on page 5-166
• “Train PPO Agent for Automatic Parking Valet” on page 5-174
• “Train DDPG Agent for Path-Following Control” on page 5-184
• “Train DQN Agent for Lane Keeping Assist Using Parallel Computing” on page 5-192
• “Train Biped Robot to Walk Using Reinforcement Learning Agents” on page 5-200
• “Quadruped Robot Locomotion Using DDPG Agent” on page 5-211
• “Train SAC Agent for Ball Balance Control” on page 5-219
• “Automatic Parking Valet with Unreal Engine Simulation” on page 5-231
• “Generate Reward Function from a Model Predictive Controller for a Servomotor” on page 5-244
• “Generate Reward Function from a Model Verification Block for a Water Tank System”

on page 5-254
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• “Train TD3 Agent for PMSM Control” on page 5-264
• “Water Distribution System Scheduling Using Reinforcement Learning” on page 5-272
• “Imitate MPC Controller for Lane Keeping Assist” on page 5-282
• “Train DDPG Agent with Pretrained Actor Network” on page 5-290
• “Imitate Nonlinear MPC Controller for Flying Robot” on page 5-298
• “Tune PI Controller using Reinforcement Learning” on page 5-306
• “Train Reinforcement Learning Agent with Constraint Enforcement” on page 5-316
• “Train Custom LQR Agent” on page 5-327
• “Train Reinforcement Learning Policy Using Custom Training Loop” on page 5-331
• “Custom Training Loop with Simulink Action Noise” on page 5-339
• “Create Agent for Custom Reinforcement Learning Algorithm” on page 5-352
• “Train MBPO Agent to Balance Cart-Pole System” on page 5-361
• “Model-Based Reinforcement Learning Using Custom Training Loop” on page 5-373
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Train Reinforcement Learning Agents
Once you have created an environment and reinforcement learning agent, you can train the agent in
the environment using the train function. To configure your training, use the rlTrainingOptions
function. For example, create a training option set opt, and train agent agent in environment env.

opt = rlTrainingOptions(...
    'MaxEpisodes',1000,...
    'MaxStepsPerEpisode',1000,...
    'StopTrainingCriteria',"AverageReward",...
    'StopTrainingValue',480);
trainResults = train(agent,env,opt);

For more information on creating agents, see “Reinforcement Learning Agents” on page 3-2. For
more information on creating environments, see “Create MATLAB Reinforcement Learning
Environments” on page 2-2 and “Create Simulink Reinforcement Learning Environments” on page 2-
8.

Note train updates the agent as training progresses. This is possible because agent is an handle
object. To preserve the original agent parameters for later use, save the agent to a MAT-file. For more
information about handle objects, see “Handle Object Behavior”.

save("initialAgent.mat","agent")

Training terminates automatically when the conditions you specify in the StopTrainingCriteria
and StopTrainingValue options of your rlTrainingOptions object are satisfied. You can also
terminate training before any termination condition is reached by clicking Stop Training in the
Reinforcement Learning Episode Manager.

When training terminates the training statistics and results are stored in the trainResults object.

Because train updates the agent at the end of each episode, and because trainResults stores the
last training results, along with data to correctly recreate the training scenario and update the
episode manager, you can later resume training from the exact point at which it stopped. To do so, at
the command line, type:

trainResults = train(agent,env,trainResults);

This starts the training from the last values of the agent parameters and training results object
obtained after the previous train call.

The trainResults object contains, as one of its properties, the rlTrainingOptions object opt
specifying the training option set. Therefore, to restart the training with updated training options,
first change the training options in trainResults using dot notation. If the maximum number of
episodes was already reached in the previous training session, you must increase the maximum
number of episodes.

For example, disable displaying the training progress on Episode Manager, enable the Verbose
option to display training progress at the command line, change the maximum number of episodes to
2000, and then restart the training, returning a new trainResults object as output.

trainResults.TrainingOptions.MaxEpisodes = 2000;
trainResults.TrainingOptions.Plots = "none";
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trainResults.TrainingOptions.Verbose = 1;
trainResultsNew = train(agent,env,trainResults);

Training Algorithm
In general, training performs the following steps.

1 Initialize the agent.
2 For each episode:

a Reset the environment.
b Get the initial observation s0 from the environment.
c Compute the initial action a0 = μ(s0), where μ(s) is the current policy.
d Set the current action to the initial action (a←a0), and set the current observation to the

initial observation (s←s0).
e While the episode is not finished or terminated, perform the following steps.

i Apply action a to the environment and obtain the next observation s''and the reward r.
ii Learn from the experience set (s,a,r,s').
iii Compute the next action a' = μ(s').
iv Update the current action with the next action (a←a') and update the current

observation with the next observation (s←s').
v Terminate the episode if the termination conditions defined in the environment are met.

3 If the training termination condition is met, terminate training. Otherwise, begin the next
episode.

The specifics of how the software performs these steps depend on the configuration of the agent and
environment. For instance, resetting the environment at the start of each episode can include
randomizing initial state values, if you configure your environment to do so. For more information on
agents and their training algorithms, see “Reinforcement Learning Agents” on page 3-2. To use
parallel processing and GPUs to speed up training, see “Train Agents Using Parallel Computing and
GPUs” on page 5-8.

Episode Manager
By default, calling the train function opens the Reinforcement Learning Episode Manager, which
lets you visualize the training progress.
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The Episode Manager plot shows the reward for each episode (EpisodeReward) and a running
average reward value (AverageReward).

For agents with a critic, Episode Q0 is the estimate of the discounted long-term reward at the start
of each episode, given the initial observation of the environment. As training progresses, if the critic
is well designed and learns successfully, Episode Q0 approaches in average the true discounted long-
term reward, which may be offset from the EpisodeReward value because of discounting. For a well
designed critic using an undiscounted reward (DiscountFactor is equal to 1), then on average
Episode Q0 approaches the true episode reward, as shown in the preceding figure.

The Episode Manager also displays various episode and training statistics. You can also use the
train function to return episode and training information. To turn off the Reinforcement Learning
Episode Manager, set the Plots option of rlTrainingOptions to "none".

Save Candidate Agents
During training, you can save candidate agents that meet conditions you specify in the
SaveAgentCriteria and SaveAgentValue options of your rlTrainingOptions object. For
instance, you can save any agent whose episode reward exceeds a certain value, even if the overall
condition for terminating training is not yet satisfied. For example, save agents when the episode
reward is greater than 100.
opt = rlTrainingOptions('SaveAgentCriteria',"EpisodeReward",'SaveAgentValue',100');

train stores saved agents in a MAT-file in the folder you specify using the SaveAgentDirectory
option of rlTrainingOptions. Saved agents can be useful, for instance, to test candidate agents
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generated during a long-running training process. For details about saving criteria and saving
location, see rlTrainingOptions.

After training is complete, you can save the final trained agent from the MATLAB workspace using
the save function. For example, save the agent myAgent to the file finalAgent.mat in the current
working directory.
save(opt.SaveAgentDirectory + "/finalAgent.mat",'agent')

By default, when DDPG and DQN agents are saved, the experience buffer data is not saved. If you
plan to further train your saved agent, you can start training with the previous experience buffer as a
starting point. In this case, set the SaveExperienceBufferWithAgent option to true. For some
agents, such as those with large experience buffers and image-based observations, the memory
required for saving the experience buffer is large. In these cases, you must ensure that enough
memory is available for the saved agents.

Validate Trained Policy
To validate your trained agent, you can simulate the agent within the training environment using the
sim function. To configure the simulation, use rlSimulationOptions.

When validating your agent, consider checking how your agent handles the following:

• Changes to simulation initial conditions — To change the model initial conditions, modify the reset
function for the environment. For example reset functions, see “Create MATLAB Environment
Using Custom Functions” on page 2-41, “Create Custom MATLAB Environment from Template” on
page 2-48, and “Create Simulink Reinforcement Learning Environments” on page 2-8.

• Mismatches between the training and simulation environment dynamics — To check such
mismatches, create test environments in the same way that you created the training environment,
modifying the environment behavior.

As with parallel training, if you have Parallel Computing Toolbox software, you can run multiple
parallel simulations on multicore computers. If you have MATLAB Parallel Server software, you can
run multiple parallel simulations on computer clusters or cloud resources. For more information on
configuring your simulation to use parallel computing, see UseParallel and
ParallelizationOptions in rlSimulationOptions.

Environment Visualization
If your training environment implements the plot method, you can visualize the environment
behavior during training and simulation. If you call plot(env) before training or simulation, where
env is your environment object, then the visualization updates during training to allow you to
visualize the progress of each episode or simulation.

Environment visualization is not supported when training or simulating your agent using parallel
computing.

For custom environments, you must implement your own plot method. For more information on
creating a custom environments with a plot function, see “Create Custom MATLAB Environment
from Template” on page 2-48.

See Also
train
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More About
• “Reinforcement Learning Agents” on page 3-2
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Train Agents Using Parallel Computing and GPUs
If you have Parallel Computing Toolbox software, you can run parallel simulations on multicore
processors or GPUs. If you additionally have MATLAB Parallel Server software, you can run parallel
simulations on computer clusters or cloud resources.

Note that parallel training and simulation of agents using recurrent neural networks, or agents within
multi-agent environments, is not supported.

Independently on which devices you use to simulate or train the agent, once the agent has been
trained, you can generate code to deploy the optimal policy on a CPU or GPU. This is explained in
more detail in “Deploy Trained Reinforcement Learning Policies” on page 6-2.

Using Multiple Processes
When you train agents using parallel computing, the parallel pool client (the MATLAB process that
starts the training) sends copies of both its agent and environment to each parallel worker. Each
worker simulates the agent within the environment and sends their simulation data back to the client.
The client agent learns from the data sent by the workers and sends the updated policy parameters
back to the workers.

To create a parallel pool of N workers, use the following syntax.

pool = parpool(N);

If you do not create a parallel pool using parpool, the train function automatically creates one
using your default parallel pool preferences. For more information on specifying these preferences,

5 Train and Validate Agents

5-8



see “Specify Your Parallel Preferences” (Parallel Computing Toolbox). Note that using a parallel pool
of thread workers, such as pool = parpool("threads"), is not supported.

To train an agent using multiple processes you must pass to the train function an
rlTrainingOptions object in which UseParallel is set to true.

For more information on configuring your training to use parallel computing, see the UseParallel
and ParallelizationOptions options in rlTrainingOptions.

For an example that trains an agent using parallel computing in MATLAB, see “Train AC Agent to
Balance Cart-Pole System Using Parallel Computing” on page 5-116. For an example that trains an
agent using parallel computing in Simulink, see “Train DQN Agent for Lane Keeping Assist Using
Parallel Computing” on page 5-192 and “Train Biped Robot to Walk Using Reinforcement Learning
Agents” on page 5-200.

Agent-Specific Parallel Training Considerations
For off-policy agents, such as DDPG and DQN agents, do not use all of your cores for parallel training.
For example, if your CPU has six cores, train with four workers. Doing so provides more resources for
the parallel pool client to compute gradients based on the experiences sent back from the workers.
Limiting the number of workers is not necessary for on-policy agents, such as AC and PG agents,
when the gradients are computed on the workers.

Gradient-Based Parallelization (AC and PG Agents)

To train AC and PG agents in parallel, the DataToSendFromWorkers property of the
ParallelTraining object (contained in the training options object) must be set to "gradients".

This configures the training so that both the environment simulation and gradient computations are
done by the workers. Specifically, workers simulate the agent against the environment, compute the
gradients from experiences, and send the gradients to the client. The client averages the gradients,
updates the network parameters and sends the updated parameters back to the workers to they can
continue simulating the agent with the new parameters.

With gradient-based parallelization, you can in principle achieve a speed improvement which is
nearly linear in the number of workers. However, this option requires synchronous training (that is
the Mode property of the rlTrainingOptions object that you pass to the train function must be
set to "sync"). This means that workers must pause execution until all workers are finished, and as a
result the training only advances as fast as the slowest worker allows.

When AC agents are trained in parallel, a warning is generated if the NumStepToLookAhead
property of the AC agent option object and the StepsUntilDataIsSent property of the
ParallelizationOptions object are set to different values.

Experience-Based Parallelization (DQN, DDPG, PPO, TD3, and SAC agents)

To train DQN, DDPG, PPO, TD3, and SAC agents in parallel, the DataToSendFromWorkers property
of the ParallelizationOptions object (contained in the training options object) must be set to
"experiences". This option does not require synchronous training (that is the Mode property of the
rlTrainingOptions object that you pass to the train function can be set to "async").

This configures the training so that the environment simulation is done by the workers and the
learning is done by the client. Specifically, the workers simulate the agent against the environment,
and send experience data (observation, action, reward, next observation, and a termination signal) to
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the client. The client then computes the gradients from experiences, updates the network parameters
and sends the updated parameters back to the workers, which continue to simulate the agent with
the new parameters .

Experience-based parallelization can reduce training time only when the computational cost of
simulating the environment is high compared to the cost of optimizing network parameters.
Otherwise, when the environment simulation is fast enough, the workers lie idle waiting for the client
to learn and send back the updated parameters.

In other words, experience-based parallelization can improve sample efficiency (intended as the
number of samples an agent can process within a given time) only when the ratio R between the
environment step complexity and the learning complexity is large. If both environment simulation and
learning are similarly computationally expensive, experience-based parallelization is unlikely to
improve sample efficiency. However, in this case, for off-policy agents, you can reduce the mini-batch
size to make R larger, thereby improving sample efficiency.

To enforce contiguity in the experience buffer when training DQN, DDPG, TD3, or SAC agents in
parallel, set the NumStepsToLookAhead property or the corresponding agent option object to 1. A
different value causes an error when parallel training is attempted.

Using GPUs
When using deep neural network function approximators for your actor or critic representation, you
can speed up training by performing representation operations (such as gradient computation and
prediction), on a local GPU rather than a CPU. To do so, when creating a critic or actor
representation, use an rlRepresentationOptions object in which the UseDevice option is set to
"gpu" instead of "cpu".

opt = rlRepresentationOptions('UseDevice',"gpu");

The "gpu" option requires both Parallel Computing Toolbox software and a CUDA enabled NVIDIA®

GPU. For more information on supported GPUs see “GPU Support by Release” (Parallel Computing
Toolbox).

You can use gpuDevice (Parallel Computing Toolbox) to query or select a local GPU device to be
used with MATLAB.

Using GPUs is likely to be beneficial when the deep neural network in the actor or critic
representation uses operations such as multiple convolutional layers on input images or has large
batch sizes.

For an example on how to train an agent using the GPU, see “Train DDPG Agent to Swing Up and
Balance Pendulum with Image Observation” on page 5-95.

Using both Multiple Processes and GPUs
You can also train agents using both multiple processes and a local GPU (previously selected using
gpuDevice (Parallel Computing Toolbox)) at the same time. Specifically, you can create a critic or
actor using an rlRepresentationOptions object in which the UseDevice option is set to "gpu".
You can then use the critic and actor to create an agent, and then train the agent using multiple
processes. This is done by creating an rlTrainingOptions object in which UseParallel is set to
true and passing it to the train function.
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For gradient-based parallelization, (which must run in synchronous mode) the environment
simulation is done by the workers, which use their local GPU to calculate the gradients and perform a
prediction step. The gradients are then sent back to the parallel pool client process which calculates
the averages, updates the network parameters and sends them back to the workers so they continue
to simulate the agent, with the new parameters, against the environment.

For experience-based parallelization, (which can run in asynchronous mode), the workers simulate
the agent against the environment, and send experiences data back to the parallel pool client. The
client then uses its local GPU to compute the gradients from the experiences, then updates the
network parameters and sends the updated parameters back to the workers, which continue to
simulate the agent, with the new parameters, against the environment.

Note that when using both parallel processing and GPU to train PPO agents, the workers use their
local GPU to compute the advantages, and then send processed experience trajectories (which
include advantages, targets and action probabilities) back to the client.

See Also
train | rlTrainingOptions | rlRepresentationOptions

Related Examples
• “Train AC Agent to Balance Cart-Pole System Using Parallel Computing” on page 5-116
• “Train DQN Agent for Lane Keeping Assist Using Parallel Computing” on page 5-192
• “Train Biped Robot to Walk Using Reinforcement Learning Agents” on page 5-200
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Design and Train Agent Using Reinforcement Learning
Designer

This example shows how to design and train a DQN agent for an environment with a discrete action
space using Reinforcement Learning Designer.

Open the Reinforcement Learning Designer App

Open the Reinforcement Learning Designer app.

reinforcementLearningDesigner

Initially, no agents or environments are loaded in the app.

Import Cart-Pole Environment

When using the Reinforcement Learning Designer, you can import an environment from the
MATLAB workspace or create a predefined environment. For more information, see “Create MATLAB
Environments for Reinforcement Learning Designer” on page 2-5 and “Create Simulink Environments
for Reinforcement Learning Designer” on page 2-11.

For this example, use the predefined discrete cart-pole MATLAB environment. To import this
environment, on the Reinforcement Learning tab, in the Environments section, select New >
Discrete Cart-Pole.

In the Environments pane, the app adds the imported Discrete CartPole environment. To
rename the environment, click the environment text. You can also import multiple environments in
the session.

To view the dimensions of the observation and action space, click the environment text. The app
shows the dimensions in the Preview pane.

This environment has a continuous four-dimensional observation space (the positions and velocities of
both the cart and pole) and a discrete one-dimensional action space consisting of two possible forces,
–10N or 10N. This environment is used in the “Train DQN Agent to Balance Cart-Pole System” on
page 5-24 example. For more information on predefined control system environments, see “Load
Predefined Control System Environments” on page 2-23.

Create DQN Agent for Imported Environment

To create an agent, on the Reinforcement Learning tab, in the Agent section, click New. In the
Create agent dialog box, specify the agent name, the environment, and the training algorithm. The
default agent configuration uses the imported environment and the DQN algorithm. For this example,
change the number of hidden units from 256 to 24. For more information on creating agents, see
“Create Agents Using Reinforcement Learning Designer” on page 3-7.

Click OK.

The app adds the new agent to the Agents pane and opens a corresponding agent1 document.

5 Train and Validate Agents

5-12



For a brief summary of DQN agent features and to view the observation and action specifications for
the agent, click Overview.

When you create a DQN agent in Reinforcement Learning Designer, the agent uses a default deep
neural network structure for its critic. To view the critic network, on the DQN Agent tab, click View
Critic Model.

The Deep Learning Network Analyzer opens and displays the critic structure.

Close the Deep Learning Network Analyzer.

Train Agent

To train your agent, on the Train tab, first specify options for training the agent. For information on
specifying training options, see “Specify Simulation Options in Reinforcement Learning Designer” on
page 5-21.

For this example, specify the maximum number of training episodes by setting Max Episodes to
1000. For the other training options, use their default values. The default criteria for stopping is
when the average number of steps per episode (over the last 5 episodes) is greater than 500.

To start training, click Train.

During training, the app opens the Training Session tab and displays the training progress in the
Training Results document.

Here, the training stops when the average number of steps per episode is 500. Clear the Show
Episode Q0 option to visualize better the episode and average rewards.

To accept the training results, on the Training Session tab, click Accept. In the Agents pane, the
app adds the trained agent, agent1_Trained.

Simulate Agent and Inspect Simulation Results

To simulate the trained agent, on the Simulate tab, first select agent1_Trained in the Agent drop-
down list, then configure the simulation options. For this example, use the default number of episodes
(10) and maximum episode length (500). For more information on specifying simulation options, see
“Specify Training Options in Reinforcement Learning Designer” on page 5-16.

To simulate the agent, click Simulate.

The app opens the Simulation Session tab. After the simulation is completed, the Simulation
Results document shows the reward for each episode as well as the reward mean and standard
deviation.

To analyze the simulation results, click Inspect Simulation Data.

In the Simulation Data Inspector you can view the saved signals for each simulation episode. For
more information, see Simulation Data Inspector (Simulink).

The following image shows the first and third states of the cart-pole system (cart position and pole
angle) for the sixth simulation episode. The agent is able to successfully balance the pole for 500
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steps, even though the cart position undergoes moderate swings. You can modify some DQN agent
options such as BatchSize and TargetUpdateFrequency to promote faster and more robust
learning. For more information, see “Train DQN Agent to Balance Cart-Pole System” on page 5-24.

Close the Simulation Data Inspector.

To accept the simulation results, on the Simulation Session tab, click Accept.

In the Results pane, the app adds the simulation results structure, experience1.

Export Agent and Save Session

To export the trained agent to the MATLAB workspace for additional simulation, on the
Reinforcement Learning tab, under Export, select the trained agent.

To save the app session, on the Reinforcement Learning tab, click Save Session. In the future, to
resume your work where you left off, you can open the session in Reinforcement Learning
Designer.

Simulate Agent at the Command Line

To simulate the agent at the MATLAB command line, first load the cart-pole environment.

env = rlPredefinedEnv("CartPole-Discrete");

The cart-pole environment has an environment visualizer that allows you to see how the system
behaves during simulation and training.

Plot the environment and perform a simulation using the trained agent that you previously exported
from the app.

plot(env)
xpr2 = sim(env,agent1_Trained);

During the simulation, the visualizer shows the movement of the cart and pole. The trained agent is
able to stabilize the system.

Finally, display the cumulative reward for the simulation.

sum(xpr2.Reward)

env = 
   500

As expected, the reward is to 500.

See Also
Reinforcement Learning Designer | analyzeNetwork

Related Examples
• “Create MATLAB Environments for Reinforcement Learning Designer” on page 2-5
• “Create Simulink Environments for Reinforcement Learning Designer” on page 2-11
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• “Create Agents Using Reinforcement Learning Designer” on page 3-7
• “Deep Q-Network Agents” on page 3-21
• “Train DQN Agent to Balance Cart-Pole System” on page 5-24
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Specify Training Options in Reinforcement Learning Designer
To configure the training of an agent in the Reinforcement Learning Designer app, specify
training options on the Train tab.

Specify Basic Options
On the Train tab, you can specify the following basic training options.

Option Description
Max Episodes Maximum number of episodes to train the agent, specified as a positive

integer.
Max Episode Length Maximum number of steps to run per episode, specified as a positive

integer.
Stopping Criteria Training termination condition, specified as one of the following values.

• AverageSteps — Stop training when the running average number of
steps per episode equals or exceeds the critical value specified by
Stopping Value.

• AverageReward — Stop training when the running average reward
equals or exceeds the critical value.

• EpisodeReward — Stop training when the reward in the current
episode equals or exceeds the critical value.

• GlobalStepCount — Stop training when the total number of steps
in all episodes (the total number of times the agent is invoked) equals
or exceeds the critical value.

• EpisodeCount — Stop training when the number of training
episodes equals or exceeds the critical value.

Stopping Value Critical value of the training termination condition in Stopping Criteria,
specified as a scalar.

Average Window
Length

Window length for averaging the scores, rewards, and number of steps
for the agent when either Stopping Criteria or Save agent criteria
specify an averaging condition.

Specify Additional Options
To specify additional training options, on the Train tab, click More Options.

In the More Training Options dialog box, you can specify the following options.
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Option Description
Save agent criteria Condition for saving agents during training, specified as one of the

following values.

• none — Do not save any agents during training.
• AverageSteps — Save the agent when the running average number

of steps per episode equals or exceeds the critical value specified by
Save agent value.

• AverageReward — Save the agent when the running average reward
equals or exceeds the critical value.

• EpisodeReward — Save the agent when the reward in the current
episode equals or exceeds the critical value.

• GlobalStepCount — Save the agent when the total number of steps
in all episodes (the total number of times the agent is invoked) equals
or exceeds the critical value.

• EpisodeCount — Save the agent when the number of training
episodes equals or exceeds the critical value.

Save agent value Critical value of the save agent condition in Save agent criteria,
specified as a scalar or "none".

Save directory Folder for saved agents. If you specify a name and the folder does not
exist, the app creates the folder in the current working directory.

To interactively select a folder, click Browse.
Show verbose output Select this option to display training progress at the command line.
Stop on Error Select this option to stop training when an error occurs during an

episode.
Training plot Option to graphically display the training progress in the app, specified

as one of the following values. "training-progress" or "none".

• training-progress — Show training progress
• none — Do not show training progress

Specify Parallel Training Options

To train your agent using parallel computing, on the Train tab, click . Training agents using
parallel computing requires Parallel Computing Toolbox software. For more information, see “Train
Agents Using Parallel Computing and GPUs” on page 5-8.

To specify options for parallel training, select Use Parallel > Parallel training options.
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In the Parallel Training Options dialog box, you can specify the following training options.

Option Description
Parallel computing
mode

Parallel computing mode, specified as one of the following values.

• sync — Use parpool to run synchronous training on the available
workers. The parallel pool client (the process that starts the training)
updates the parameters of its actor and critic, based on the results
from all the workers, and sends the updated parameters to all
workers. In this case, workers must pause execution until all workers
are finished, and as a result the training only advances as fast as the
slowest worker allows.

• async — Use parpool to run asynchronous training on the available
workers. In this case, workers send their data back to the client as
soon as they finish and receive updated parameters from the client.
The workers then continue with their task.
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Option Description
Type of data from
workers

Type of data that workers send to the parallel pool client, specified as
one of the following values.

• experiences — The simulation is performed by the workers, and the
learning is performed by the client (the process that starts the
training). Specifically, the workers simulate the agent against the
environment, and send experience data (observation, action, reward,
next observation, and a flag indicating whether a terminal condition
has been reached) to the client. For agents with gradients, the client
computes gradients from the experiences, updates the network
parameters and sends back the updated parameters to the workers to
they can perform a new simulation against the environment.

• gradients — Both simulation and learning are performed by the
workers. Specifically, the workers simulate the agent against the
environment, compute the gradients from experiences, and send the
gradients to the host. The host averages the gradients, updates the
network parameters and sends back the updated parameters to the
workers to they can perform a new simulation against the
environment.

Note For DQN, DDPG, PPO, SAC and TD3 you must set this option to
experiences. For AC and PG agents, this option must be set to
gradient

Steps until data is sent Number of steps after which workers send data to the client and receive
updated parameters, specified as –1 or a positive integer. When this
option is –1, the worker waits until the end of the episode and then
sends all step data to the client. Otherwise, the worker waits the
specified number of steps before sending data.

Transfer workspace
variables to workers

Select this option to send model and workspace variables to parallel
workers. When you select this option, the parallel pool client (the process
that starts the training) sends variables used in models and defined in
the MATLAB workspace to the workers.

Random seed for
workers

Randomizer initialization for workers, specified as one of the following
values.

• –1 — Assign a unique random seed to each worker. The value of the
seed is the worker ID.

• –2 — Do not assign a random seed to the workers.
• Vector — Manually specify the random seed for each worker. The

number of elements in the vector must match the number of workers.
Files to attach to
parallel pool

Additional files to attach to the parallel pool. Specify names of files in the
current working directory, with one name on each line.

Worker setup function Function to run before training starts, specified as a handle to a function
having no input arguments. This function is run once per worker before
training begins. Write this function to perform any processing that you
need prior to training.
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Option Description
Worker cleanup
function

Function to run after training ends, specified as a handle to a function
having no input arguments. You can write this function to clean up the
workspace or perform other processing after training terminates.

The following figure shows an example parallel training configuration the following files and
functions.

• Data file attached to the parallel pool — workerData.mat
• Worker setup function — mySetup.m
• Worker cleanup function — myCleanup.m

See Also
Reinforcement Learning Designer

Related Examples
• “Design and Train Agent Using Reinforcement Learning Designer” on page 5-12
• “Specify Simulation Options in Reinforcement Learning Designer” on page 5-21
• “Create Agents Using Reinforcement Learning Designer” on page 3-7
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Specify Simulation Options in Reinforcement Learning
Designer

To configure the simulation of an agent in the Reinforcement Learning Designer app, specify
simulation options on the Simulate tab.

Specify Basic Options
On the Simulate tab, you can specify the following basic simulation options.

Option Description
Number of Episodes Number of episodes to simulate the agent, specified as a positive integer.

At the start of each simulation episode, the app resets the environment.
Max Episode Length Number of steps to run the simulation, specified as a positive integer. In

general, you define episode termination conditions in the environment.
This value is the maximum number of steps to run in the simulation if
those termination conditions are not met.

Stop on Error Select this option to stop simulation when an error occurs during an
episode.

Specify Parallel Simulation Options

To simulate your agent using parallel computing, on the Simulate tab, click . Simulating agents
using parallel computing requires Parallel Computing Toolbox software. For more information, see
“Train Agents Using Parallel Computing and GPUs” on page 5-8.

To specify options for parallel simulation, select Use Parallel > Parallel training options.
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In the Parallel Simulation Options dialog box, you can specify the following training options.

Option Description
Transfer workspace
variables to workers

Select this option to send model and workspace variables to parallel
workers. When you select this option, the parallel pool client (the process
that starts the training) sends variables used in models and defined in
the MATLAB workspace to the workers.

Random seed for
workers

Randomizer initialization for workers, specified as one of the following
values.

• –1 — Assign a unique random seed to each worker. The value of the
seed is the worker ID.

• –2 — Do not assign a random seed to the workers.
• Vector — Manually specify the random seed for each worker. The

number of elements in the vector must match the number of workers.
Files to attach to
parallel pool

Additional files to attach to the parallel pool. Specify names of files in the
current working directory, with one name on each line.

Worker setup function Function to run before simulation starts, specified as the name of a
function having no input arguments. This function is run once per worker
before simulation begins. Write this function to perform any processing
that you need prior to training.

Worker cleanup
function

Function to run after simulation ends, specified as the name of a function
having no input arguments. You can write this function to clean up the
workspace or perform other processing after training terminates.

The following figure shows an example parallel training configuration the following files and
functions.

• Data file attached to the parallel pool — workerData.mat
• Worker setup function — mySetup.m
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• Worker cleanup function — myCleanup.m

See Also
Reinforcement Learning Designer

Related Examples
• “Design and Train Agent Using Reinforcement Learning Designer” on page 5-12
• “Specify Training Options in Reinforcement Learning Designer” on page 5-16
• “Create Agents Using Reinforcement Learning Designer” on page 3-7
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Train DQN Agent to Balance Cart-Pole System
This example shows how to train a deep Q-learning network (DQN) agent to balance a cart-pole
system modeled in MATLAB®.

For more information on DQN agents, see “Deep Q-Network Agents” on page 3-21. For an example
that trains a DQN agent in Simulink®, see “Train DQN Agent to Swing Up and Balance Pendulum” on
page 5-53.

Cart-Pole MATLAB Environment

The reinforcement learning environment for this example is a pole attached to an unactuated joint on
a cart, which moves along a frictionless track. The training goal is to make the pole stand upright
without falling over.

For this environment:

• The upward balanced pole position is 0 radians, and the downward hanging position is pi radians.
• The pole starts upright with an initial angle between –0.05 and 0.05 radians.
• The force action signal from the agent to the environment is from –10 to 10 N.
• The observations from the environment are the position and velocity of the cart, the pole angle,

and the pole angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical or if the cart moves more

than 2.4 m from the original position.
• A reward of +1 is provided for every time step that the pole remains upright. A penalty of –5 is

applied when the pole falls.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
23.

Create Environment Interface

Create a predefined environment interface for the system.

env = rlPredefinedEnv("CartPole-Discrete")

env = 
  CartPoleDiscreteAction with properties:
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                  Gravity: 9.8000
                 MassCart: 1
                 MassPole: 0.1000
                   Length: 0.5000
                 MaxForce: 10
                       Ts: 0.0200
    ThetaThresholdRadians: 0.2094
               XThreshold: 2.4000
      RewardForNotFalling: 1
        PenaltyForFalling: -5
                    State: [4x1 double]

The interface has a discrete action space where the agent can apply one of two possible force values
to the cart, –10 or 10 N.

Get the observation and action specification information.

obsInfo = getObservationInfo(env)

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "CartPole States"
    Description: "x, dx, theta, dtheta"
      Dimension: [4 1]
       DataType: "double"

actInfo = getActionInfo(env)

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [-10 10]
           Name: "CartPole Action"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

Fix the random generator seed for reproducibility.

rng(0)

Create DQN Agent

A DQN agent approximates the long-term reward, given observations and actions, using a value-
function critic.

DQN agents can use multi-output Q-value critic approximators, which are generally more efficient. A
multi-output approximator has observations as inputs and state-action values as outputs. Each output
element represents the expected cumulative long-term reward for taking the corresponding discrete
action from the state indicated by the observation inputs.
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To create the critic, first create a deep neural network with one input (the 4-dimensional observed
state) and one output vector with two elements (one for the 10 N action, another for the –10 N
action). For more information on creating value-function representations based on a neural network,
see “Create Policies and Value Functions” on page 4-2.

dnn = [
    featureInputLayer(obsInfo.Dimension(1),'Normalization','none','Name','state')
    fullyConnectedLayer(24,'Name','CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(24, 'Name','CriticStateFC2')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(length(actInfo.Elements),'Name','output')];
dnn = dlnetwork(dnn);

View the network configuration.

figure
plot(layerGraph(dnn))

Specify some training options for the critic optimizer using rlOptimizerOptions.

criticOpts = rlOptimizerOptions('LearnRate',0.001,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. For more
information, see rlVectorQValueFunction.

critic = rlVectorQValueFunction(dnn,obsInfo,actInfo);

5 Train and Validate Agents

5-26



To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.

agentOpts = rlDQNAgentOptions(...
    'UseDoubleDQN',false, ...    
    'TargetSmoothFactor',1, ...
    'TargetUpdateFrequency',4, ...   
    'ExperienceBufferLength',100000, ...
    'CriticOptimizerOptions',criticOpts, ...
    'MiniBatchSize',256);

Then, create the DQN agent using the specified critic representation and agent options. For more
information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run one training session containing at most 1000 episodes, with each episode lasting at most 500
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an moving average cumulative reward greater than 480. At
this point, the agent can balance the cart-pole system in the upright position.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',1000, ...
    'MaxStepsPerEpisode',500, ...
    'Verbose',false, ...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',480); 

You can visualize the cart-pole system can be visualized by using the plot function during training or
simulation.

plot(env)
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Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('MATLABCartpoleDQNMulti.mat','agent')
end

Simulate DQN Agent

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim. The agent can balance
the cart-pole even when the simulation time increases to 500 steps.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);
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totalReward = sum(experience.Reward)

totalReward = 500

See Also
train

More About
• “Deep Q-Network Agents” on page 3-21
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Policies and Value Functions” on page 4-2
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Train PG Agent to Balance Cart-Pole System
This example shows how to train a policy gradient (PG) agent to balance a cart-pole system modeled
in MATLAB®. For more information on PG agents, see “Policy Gradient Agents” on page 3-25.

For an example that trains a PG agent with a baseline, see “Train PG Agent with Baseline to Control
Double Integrator System” on page 5-41.

Cart-Pole MATLAB Environment

The reinforcement learning environment for this example is a pole attached to an unactuated joint on
a cart, which moves along a frictionless track. The training goal is to make the pendulum stand
upright without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The pendulum starts upright with an initial angle between –0.05 and 0.05 radians.
• The force action signal from the agent to the environment is from –10 to 10 N.
• The observations from the environment are the position and velocity of the cart, the pendulum

angle, and the pendulum angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical or if the cart moves more

than 2.4 m from the original position.
• A reward of +1 is provided for every time step that the pole remains upright. A penalty of –5 is

applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
23.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("CartPole-Discrete")

env = 
  CartPoleDiscreteAction with properties:
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                  Gravity: 9.8000
                 MassCart: 1
                 MassPole: 0.1000
                   Length: 0.5000
                 MaxForce: 10
                       Ts: 0.0200
    ThetaThresholdRadians: 0.2094
               XThreshold: 2.4000
      RewardForNotFalling: 1
        PenaltyForFalling: -5
                    State: [4×1 double]

The interface has a discrete action space where the agent can apply one of two possible force values
to the cart, –10 or 10 N.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create PG Agent

A PG agent decides which action to take given observations using an actor representation. To create
the actor, first create a deep neural network with one input (the observation) and one output (the
action). The actor network has two outputs, which corresponds to the number of possible actions. For
more information on creating a deep neural network policy representation, see “Create Policies and
Value Functions” on page 4-2.

actorNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','state')
    fullyConnectedLayer(2,'Name','fc')
    softmaxLayer('Name','actionProb')
    ];

Specify options for the actor representation using rlRepresentationOptions.

actorOpts = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);

Create the actor representation using the specified deep neural network and options. You must also
specify the action and observation information for the critic, which you obtained from the
environment interface. For more information, see rlStochasticActorRepresentation.

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'state'},actorOpts);

Create the agent using the specified actor representation and the default agent options. For more
information, see rlPGAgent.

agent = rlPGAgent(actor);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.
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• Run each training episode for at most 1000 episodes, with each episode lasting at most 200 time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 195 over 100
consecutive episodes. At this point, the agent can balance the pendulum in the upright position.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes', 1000, ...
    'MaxStepsPerEpisode', 200, ...
    'Verbose', false, ...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',195,...
    'ScoreAveragingWindowLength',100); 

You can visualize the cart-pole system by using the plot function during training or simulation.

plot(env)

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('MATLABCartpolePG.mat','agent');
end
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Simulate PG Agent

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim. The agent can balance
the cart-pole system even when the simulation time increases to 500 steps.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

totalReward = sum(experience.Reward)
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totalReward = 500

See Also
train

More About
• “Policy Gradient Agents” on page 3-25
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Policies and Value Functions” on page 4-2
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Train AC Agent to Balance Cart-Pole System
This example shows how to train an actor-critic (AC) agent to balance a cart-pole system modeled in
MATLAB®.

For more information on AC agents, see “Actor-Critic Agents” on page 3-38. For an example showing
how to train an AC agent using parallel computing, see “Train AC Agent to Balance Cart-Pole System
Using Parallel Computing” on page 5-116.

Cart-Pole MATLAB Environment

The reinforcement learning environment for this example is a pole attached to an unactuated joint on
a cart, which moves along a frictionless track. The training goal is to make the pendulum stand
upright without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The pendulum starts upright with an initial angle between –0.05 and 0.5 rad.
• The force action signal from the agent to the environment is from –10 to 10 N.
• The observations from the environment are the position and velocity of the cart, the pendulum

angle, and the pendulum angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical or if the cart moves more

than 2.4 m from the original position.
• A reward of +1 is provided for every time step that the pole remains upright. A penalty of –5 is

applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
23.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("CartPole-Discrete")
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env = 
  CartPoleDiscreteAction with properties:

                  Gravity: 9.8000
                 MassCart: 1
                 MassPole: 0.1000
                   Length: 0.5000
                 MaxForce: 10
                       Ts: 0.0200
    ThetaThresholdRadians: 0.2094
               XThreshold: 2.4000
      RewardForNotFalling: 1
        PenaltyForFalling: -5
                    State: [4x1 double]

env.PenaltyForFalling = -10;

The interface has a discrete action space where the agent can apply one of two possible force values
to the cart, –10 or 10 N.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create AC Agent

An AC agent approximates the long-term reward, given observations and actions, using a critic value
function representation. To create the critic, first create a deep neural network with one input (the
observation) and one output (the state value). The input size of the critic network is 4 since the
environment has four observations. For more information on creating a deep neural network value
function representation, see “Create Policies and Value Functions” on page 4-2.

criticNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(32,'Name','CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(1, 'Name', 'CriticFC')];
criticNetwork = dlnetwork(criticNetwork);

Specify options for the critic representation using rlOptimizerOptions.

criticOpts = rlOptimizerOptions('LearnRate',1e-2,'GradientThreshold',1);

Create the critic representation using the specified deep neural network. You must also specify the
action and observation information for the critic, which you obtain from the environment interface.
For more information, see rlValueFunction.

critic = rlValueFunction(criticNetwork,obsInfo);

An AC agent decides which action to take, given observations, using an actor representation. To
create the actor, create a deep neural network with one input (the observation) and one output (the
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action). The output size of the actor network is 2 since the environment has two possible actions, –10
and 10.

Construct the actor in a similar manner to the critic. For more information, see
rlDiscreteCategoricalActor.

actorNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(32, 'Name','ActorStateFC1')
    reluLayer('Name','ActorRelu1')
    fullyConnectedLayer(2,'Name','ActorStateFC2')
    softmaxLayer('Name','actionProb')];
actorNetwork = dlnetwork(actorNetwork);

actorOpts = rlOptimizerOptions('LearnRate',1e-2,'GradientThreshold',1);

actor = rlDiscreteCategoricalActor(actorNetwork,obsInfo,actInfo);

To create the AC agent, first specify the AC agent options using rlACAgentOptions.

agentOpts = rlACAgentOptions(...
    'ActorOptimizerOptions',actorOpts, ...
    'CriticOptimizerOptions',criticOpts,...
    'EntropyLossWeight',0.01);

Then create the agent using the specified actor representation and the default agent options. For
more information, see rlACAgent.

agent = rlACAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training episode for at most 1000 episodes, with each episode lasting at most 500 time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 480 over 10
consecutive episodes. At this point, the agent can balance the pendulum in the upright position.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',1000,...
    'MaxStepsPerEpisode',500,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',480,...
    'ScoreAveragingWindowLength',10); 

You can visualize the cart-pole system during training or simulation using the plot function.

plot(env)
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Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('MATLABCartpoleAC.mat','agent');
end
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Simulate AC Agent

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);
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totalReward = sum(experience.Reward)

totalReward = 500

See Also
train

More About
• “Actor-Critic Agents” on page 3-38
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Policies and Value Functions” on page 4-2
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Train PG Agent with Baseline to Control Double Integrator
System

This example shows how to train a policy gradient (PG) agent with baseline to control a second-order
dynamic system modeled in MATLAB®.

For more information on the basic PG agent with no baseline, see the example “Train PG Agent to
Balance Cart-Pole System” on page 5-30.

Double Integrator MATLAB Environment

The reinforcement learning environment for this example is a second-order double integrator system
with a gain. The training goal is to control the position of a mass in the second-order system by
applying a force input.

For this environment:

• The mass starts at an initial position between –2 and 2 units.
• The force action signal from the agent to the environment is from –2 to 2 N.
• The observations from the environment are the position and velocity of the mass.
• The episode terminates if the mass moves more than 5 m from the original position or if

x < 0 . 01.
• The reward rt, provided at every time step, is a discretization of r t :

r t = − x t ′ Q x t + u t ′ R u t

Here:

• x is the state vector of the mass.
• u is the force applied to the mass.
• Q is the weights on the control performance; Q = 10 0; 0 1 .
• R is the weight on the control effort; R = 0 . 01.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
23.
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Create Double Integrator MATLAB Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("DoubleIntegrator-Discrete")

env = 
  DoubleIntegratorDiscreteAction with properties:

             Gain: 1
               Ts: 0.1000
      MaxDistance: 5
    GoalThreshold: 0.0100
                Q: [2x2 double]
                R: 0.0100
         MaxForce: 2
            State: [2x1 double]

The interface has a discrete action space where the agent can apply one of three possible force
values to the mass: -2, 0, or 2 N.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numActions = numel(actInfo.Elements);

Fix the random generator seed for reproducibility.

rng(0)

Create PG Agent Actor

A PG agent decides which action to take, given observations, using an actor representation. To create
the actor, first create a deep neural network with one input (the observation) and one output (the
action). For more information on creating a deep neural network value function representation, see
“Create Policies and Value Functions” on page 4-2.

actorNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','state')
    fullyConnectedLayer(numActions,'Name','action','BiasLearnRateFactor',0)];
actorNetwork = dlnetwork(actorNetwork);

Specify options for the actor optimizer using rlOptimizerOptions.

actorOpts = rlOptimizerOptions('LearnRate',5e-3,'GradientThreshold',1);

Create the actor representation using the specified deep neural network and options. You must also
specify the action and observation information for the critic, which you obtained from the
environment interface. For more information, see rlDiscreteCategoricalActor.

actor = rlDiscreteCategoricalActor(actorNetwork,obsInfo,actInfo);
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Create PG Agent Baseline

A baseline that varies with state can reduce the variance of the expected value of the update and thus
improve the speed of learning for a PG agent. A possible choice for the baseline is an estimate of the
state value function [1].

In this case, the baseline representation is a deep neural network with one input (the state) and one
output (the state value).

Construct the baseline in a similar manner to the actor.

baselineNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','state')
    fullyConnectedLayer(8,'Name','BaselineFC')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(1,'Name','BaselineFC2','BiasLearnRateFactor',0)];
baselineNetwork = dlnetwork(baselineNetwork);

baselineOpts = rlOptimizerOptions('LearnRate',5e-3,'GradientThreshold',1);

baseline = rlValueFunction(baselineNetwork,obsInfo);

To create the PG agent with baseline, specify the PG agent options using rlPGAgentOptions and set
the UseBaseline option set to true.

agentOpts = rlPGAgentOptions(...
    'UseBaseline',true, ...
    'ActorOptimizerOptions',actorOpts, ...
    'CriticOptimizerOptions',baselineOpts);

Then create the agent using the specified actor representation, baseline representation, and agent
options. For more information, see rlPGAgent.

agent = rlPGAgent(actor,baseline,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run at most 1000 episodes, with each episode lasting at most 200 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option) and

disable the command line display (set the Verbose option).
• Stop training when the agent receives a moving average cumulative reward greater than –45. At

this point, the agent can control the position of the mass using minimal control effort.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',1000, ...
    'MaxStepsPerEpisode',200, ...
    'Verbose',false, ...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-43);

You can visualize the double integrator system using the plot function during training or simulation.
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plot(env)

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained parameters for the example.
    load('DoubleIntegPGBaseline.mat');
end
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Simulate PG Agent

To validate the performance of the trained agent, simulate it within the double integrator
environment. For more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

totalReward = sum(experience.Reward)

totalReward = -43.0392
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Train DDPG Agent to Control Double Integrator System
This example shows how to train a deep deterministic policy gradient (DDPG) agent to control a
second-order dynamic system modeled in MATLAB®.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
29. For an example showing how to train a DDPG agent in Simulink®, see “Train DDPG Agent to
Swing Up and Balance Pendulum” on page 5-60.

Double Integrator MATLAB Environment

The reinforcement learning environment for this example is a second-order double-integrator system
with a gain. The training goal is to control the position of a mass in the second-order system by
applying a force input.

For this environment:

• The mass starts at an initial position between –4 and 4 units.
• The force action signal from the agent to the environment is from –2 to 2 N.
• The observations from the environment are the position and velocity of the mass.
• The episode terminates if the mass moves more than 5 m from the original position or if

x < 0 . 01.
• The reward rt, provided at every time step, is a discretization of r t :

r t = − x t ′ Q x t + u t ′ R u t

Here:

• x is the state vector of the mass.
• u is the force applied to the mass.
• Q is the weights on the control performance; Q = 10 0; 0 1 .
• R is the weight on the control effort; R = 0 . 01.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
23.
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Create Environment Interface

Create a predefined environment interface for the double integrator system.

env = rlPredefinedEnv("DoubleIntegrator-Continuous")

env = 
  DoubleIntegratorContinuousAction with properties:

             Gain: 1
               Ts: 0.1000
      MaxDistance: 5
    GoalThreshold: 0.0100
                Q: [2x2 double]
                R: 0.0100
         MaxForce: Inf
            State: [2x1 double]

env.MaxForce = Inf;

The interface has a continuous action space where the agent can apply force values from -Inf to Inf
to the mass.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numActions = numel(actInfo);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward, given observations and actions, using a critic
value function representation. To create the critic, first create a deep neural network with two inputs
(the state and action) and one output. For more information on creating a neural network value
function representation, see “Create Policies and Value Functions” on page 4-2.

statePath = featureInputLayer(numObservations,'Normalization','none','Name','state');
actionPath = featureInputLayer(numActions,'Normalization','none','Name','action');
commonPath = [concatenationLayer(1,2,'Name','concat')
             quadraticLayer('Name','quadratic')
             fullyConnectedLayer(1,'Name','StateValue','BiasLearnRateFactor',0,'Bias',0)];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'state','concat/in1');
criticNetwork = connectLayers(criticNetwork,'action','concat/in2');

View the critic network configuration.

figure
plot(criticNetwork)
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Specify options for the critic representation using rlOptimizerOptions.

criticOpts = rlOptimizerOptions('LearnRate',5e-3,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. You must also specify
the action and observation info for the critic, which you obtain from the environment interface. For
more information, see rlQValueFunction.

critic = rlQValueFunction(criticNetwork,obsInfo,actInfo,'ObservationInputNames','state','ActionInputNames','action');

A DDPG agent decides which action to take, given observations, using an actor representation. To
create the actor, first create a deep neural network with one input (the observation) and one output
(the action).

Construct the actor in a similar manner to the critic.

actorNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','state')
    fullyConnectedLayer(numActions,'Name','action','BiasLearnRateFactor',0,'Bias',0)];
actorNetwork = dlnetwork(actorNetwork);
actorOpts = rlOptimizerOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
    'SampleTime',env.Ts,...
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    'ActorOptimizerOptions',actorOpts,...
    'CriticOptimizerOptions',criticOpts,...
    'ExperienceBufferLength',1e6,...
    'MiniBatchSize',32);
agentOpts.NoiseOptions.Variance = 0.3;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-6;

Create the DDPG agent using the specified actor representation, critic representation, and agent
options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run at most 1000 episodes in the training session, with each episode lasting at most 200 time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option).

• Stop training when the agent receives a moving average cumulative reward greater than –66. At
this point, the agent can control the position of the mass using minimal control effort.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes', 5000, ...
    'MaxStepsPerEpisode', 200, ...
    'Verbose', false, ...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-66);

You can visualize the double integrator environment by using the plot function during training or
simulation.

plot(env)

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.
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doTraining = false;
if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('DoubleIntegDDPG.mat','agent');
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the double integrator
environment. For more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);
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totalReward = sum(experience.Reward)

totalReward = -65.9933

See Also
train

More About
• “Deep Deterministic Policy Gradient Agents” on page 3-29
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Policies and Value Functions” on page 4-2
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Train DQN Agent to Swing Up and Balance Pendulum
This example shows how to train a deep Q-learning network (DQN) agent to swing up and balance a
pendulum modeled in Simulink®.

For more information on DQN agents, see “Deep Q-Network Agents” on page 3-21. For an example
that trains a DQN agent in MATLAB®, see “Train DQN Agent to Balance Cart-Pole System” on page
5-24.

Pendulum Swing-up Model

The reinforcement learning environment for this example is a simple frictionless pendulum that
initially hangs in a downward position. The training goal is to make the pendulum stand upright
without falling over using minimal control effort.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

For this model:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The torque action signal from the agent to the environment is from –2 to 2 N·m.
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• The observations from the environment are the sine of the pendulum angle, the cosine of the
pendulum angle, and the pendulum angle derivative.

• The reward rt, provided at every timestep, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.
• θṫ is the derivative of the displacement angle.
• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Load Predefined Simulink Environments” on page 2-30.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumModel-Discrete')

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : []
  UseFastRestart : on

The interface has a discrete action space where the agent can apply one of three possible torque
values to the pendulum: –2, 0, or 2 N·m.

To define the initial condition of the pendulum as hanging downward, specify an environment reset
function using an anonymous function handle. This reset function sets the model workspace variable
theta0 to pi.

env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);

Get the observation and action specification information from the environment

obsInfo = getObservationInfo(env)

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "observations"
    Description: [0x0 string]
      Dimension: [3 1]
       DataType: "double"

actInfo = getActionInfo(env)
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actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [3x1 double]
           Name: "torque"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

Specify the simulation time Tf and the agent sample time Ts in seconds.

Ts = 0.05;
Tf = 20;

Fix the random generator seed for reproducibility.

rng(0)

Create DQN Agent

A DQN agent approximates the long-term reward, given observations and actions, using a value
function critic.

Since DQN has a discrete action space, it can rely on a multi-output critic approximator, which is
generally a more efficient option than relying on a comparable single-output approximator. A multi-
output approximator has only the observation as input and an output vector having as many elements
as the number of possible discrete actions. Each output element represents the expected cumulative
long-term reward following from the observation given as input, when the corresponding discrete
action is taken.

To create the critic, first create a deep neural network with an input vector of three elements ( for the
sine, cosine, and derivative of the pendulum angle) and one output vector with three elements (–2, 0,
or 2 Nm actions). For more information on creating a deep neural network value function
representation, see “Create Policies and Value Functions” on page 4-2.

dnn = [
    featureInputLayer(3,'Normalization','none','Name','state')
    fullyConnectedLayer(24,'Name','CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(48,'Name','CriticStateFC2')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(3,'Name','output')];
dnn = dlnetwork(dnn);

View the critic network configuration.

figure
plot(layerGraph(dnn))
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Specify options for the critic optimizer using rlOptimizerOptions.

criticOpts = rlOptimizerOptions('LearnRate',0.001,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You must also
specify observation and action info for the critic. For more information, see
rlVectorQValueFunction.

critic = rlVectorQValueFunction(dnn,obsInfo,actInfo);

To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.

agentOptions = rlDQNAgentOptions(...
    'SampleTime',Ts,...
    'CriticOptimizerOptions',criticOpts,...
    'ExperienceBufferLength',3000,... 
    'UseDoubleDQN',false);

Then, create the DQN agent using the specified critic representation and agent options. For more
information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.
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• Run each training for at most 1000 episodes, with each episode lasting at most 500 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option) and

disable the command line display (set the Verbose option to false).
• Stop training when the agent receives an average cumulative reward greater than –1100 over five

consecutive episodes. At this point, the agent can quickly balance the pendulum in the upright
position using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than –1100.

For more information, see rlTrainingOptions.

trainingOptions = rlTrainingOptions(...
    'MaxEpisodes',1000,...
    'MaxStepsPerEpisode',500,...
    'ScoreAveragingWindowLength',5,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-1100,...
    'SaveAgentCriteria','EpisodeReward',...
    'SaveAgentValue',-1100);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainingOptions);
else
    % Load the pretrained agent for the example.
    load('SimulinkPendulumDQNMulti.mat','agent');
end
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Simulate DQN Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-58



See Also
rlDQNAgent

More About
• “Deep Q-Network Agents” on page 3-21
• “Create Simulink Reinforcement Learning Environments” on page 2-8
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Train DDPG Agent to Swing Up and Balance Pendulum
This example shows how to train a deep deterministic policy gradient (DDPG) agent to swing up and
balance a pendulum modeled in Simulink®.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
29. For an example that trains a DDPG agent in MATLAB®, see “Train DDPG Agent to Control Double
Integrator System” on page 5-47.

Pendulum Swing-Up Model

The reinforcement learning environment for this example is a simple frictionless pendulum that
initially hangs in a downward position. The training goal is to make the pendulum stand upright
without falling over using minimal control effort.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

For this model:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The torque action signal from the agent to the environment is from –2 to 2 N·m.
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• The observations from the environment are the sine of the pendulum angle, the cosine of the
pendulum angle, and the pendulum angle derivative.

• The reward rt, provided at every time step, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.

• θṫ is the derivative of the displacement angle.

• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Load Predefined Simulink Environments” on page 2-30.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumModel-Continuous')

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : []
  UseFastRestart : on

The interface has a continuous action space where the agent can apply torque values between –2 to 2
N·m to the pendulum.

Set the observations of the environment to be the sine of the pendulum angle, the cosine of the
pendulum angle, and the pendulum angle derivative.

numObs = 3;
set_param('rlSimplePendulumModel/create observations','ThetaObservationHandling','sincos');

To define the initial condition of the pendulum as hanging downward, specify an environment reset
function using an anonymous function handle. This reset function sets the model workspace variable
theta0 to pi.

env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);

Specify the simulation time Tf and the agent sample time Ts in seconds.

Ts = 0.05;
Tf = 20;

Fix the random generator seed for reproducibility.

rng(0)
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Create DDPG Agent

A DDPG agent approximates the long-term reward, given observations and actions, using a critic
value function representation. To create the critic, first create a deep neural network with two inputs
(the state and action) and one output. For more information on creating a deep neural network value
function representation, see “Create Policies and Value Functions” on page 4-2.

statePath = [
    featureInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400,'Name','CriticStateFC1')
    reluLayer('Name', 'CriticRelu1')
    fullyConnectedLayer(300,'Name','CriticStateFC2')];
actionPath = [
    featureInputLayer(1,'Normalization','none','Name','action')
    fullyConnectedLayer(300,'Name','CriticActionFC1','BiasLearnRateFactor',0)];
commonPath = [
    additionLayer(2,'Name','add')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
    
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');
criticNetwork = dlnetwork(criticNetwork);

View the critic network configuration.

figure
plot(layerGraph(criticNetwork))
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Specify options for the critic representation using rlOptimizerOptions.

criticOpts = rlOptimizerOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation info for the critic, which you obtain from the environment
interface. For more information, see rlQValueRepresentation.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
critic = rlQValueFunction(criticNetwork,obsInfo,actInfo,'ObservationInputNames','observation','ActionInputNames','action');

A DDPG agent decides which action to take given observations using an actor representation. To
create the actor, first create a deep neural network with one input, the observation, and one output,
the action.

Construct the actor in a manner similar to the critic. For more information, see
rlDeterministicActorRepresentation.

actorNetwork = [
    featureInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400,'Name','ActorFC1')
    reluLayer('Name','ActorRelu1')
    fullyConnectedLayer(300,'Name','ActorFC2')
    reluLayer('Name','ActorRelu2')
    fullyConnectedLayer(1,'Name','ActorFC3')
    tanhLayer('Name','ActorTanh')
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    scalingLayer('Name','ActorScaling','Scale',max(actInfo.UpperLimit))];
actorNetwork = dlnetwork(actorNetwork);

actorOpts = rlOptimizerOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
    'SampleTime',Ts,...
    'CriticOptimizerOptions',criticOpts,...
    'ActorOptimizerOptions',actorOpts,...
    'ExperienceBufferLength',1e6,...
    'DiscountFactor',0.99,...
    'MiniBatchSize',128);
agentOpts.NoiseOptions.Variance = 0.6;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

Then create the DDPG agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run training for at most 50000 episodes, with each episode lasting at most ceil(Tf/Ts) time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than –740 over five
consecutive episodes. At this point, the agent can quickly balance the pendulum in the upright
position using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than –740.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'ScoreAveragingWindowLength',5,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-740,...
    'SaveAgentCriteria','EpisodeReward',...
    'SaveAgentValue',-740);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.
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doTraining = false;
if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('SimulinkPendulumDDPG.mat','agent')
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);
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See Also
rlDDPGAgent | rlSimulinkEnv | train

More About
• “Create Simulink Reinforcement Learning Environments” on page 2-8
• “Deep Deterministic Policy Gradient Agents” on page 3-29
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Train DDPG Agent to Swing Up and Balance Cart-Pole System
This example shows how to train a deep deterministic policy gradient (DDPG) agent to swing up and
balance a cart-pole system modeled in Simscape™ Multibody™.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
29. For an example showing how to train a DDPG agent in MATLAB®, see “Train DDPG Agent to
Control Double Integrator System” on page 5-47.

Cart-Pole Simscape Model

The reinforcement learning environment for this example is a pole attached to an unactuated joint on
a cart, which moves along a frictionless track. The training goal is to make the pole stand upright
without falling over using minimal control effort.

Open the model.

mdl = 'rlCartPoleSimscapeModel';
open_system(mdl)

The cart-pole system is modeled using Simscape Multibody.
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For this model:

• The upward balanced pole position is 0 radians, and the downward hanging position is pi radians.
• The force action signal from the agent to the environment is from –15 to 15 N.
• The observations from the environment are the position and velocity of the cart, and the sine,

cosine, and derivative of the pole angle.
• The episode terminates if the cart moves more than 3.5 m from the original position.
• The reward rt, provided at every timestep, is

rt = − 0 . 1 5θt
2 + xt2 + 0 . 05ut − 1

2 − 100B

Here:

• θt is the angle of displacement from the upright position of the pole.
• xt is the position displacement from the center position of the cart.
• ut − 1 is the control effort from the previous time step.
• B is a flag (1 or 0) that indicates whether the cart is out of bounds.

For more information on this model, see “Load Predefined Simulink Environments” on page 2-30.

Create Environment Interface

Create a predefined environment interface for the pole.

env = rlPredefinedEnv('CartPoleSimscapeModel-Continuous')

env = 
SimulinkEnvWithAgent with properties:

           Model : rlCartPoleSimscapeModel
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      AgentBlock : rlCartPoleSimscapeModel/RL Agent
        ResetFcn : []
  UseFastRestart : on

The interface has a continuous action space where the agent can apply possible torque values from –
15 to 15 N to the pole.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Specify the simulation time Tf and the agent sample time Ts in seconds

Ts = 0.02;
Tf = 25;

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward, given observations and actions, using a critic
value function representation. To create the critic, first create a deep neural network with two inputs
(the state and action) and one output. The input size of action path is [1 1 1] since the agent can
apply an action as one force value to the environment. For more information on creating a deep
neural network value function representation, see “Create Policies and Value Functions” on page 4-2.

statePath = [
    featureInputLayer(numObservations,'Normalization','none','Name','observation')
    fullyConnectedLayer(128,'Name','CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(200,'Name','CriticStateFC2')];

actionPath = [
    featureInputLayer(1,'Normalization','none','Name','action')
    fullyConnectedLayer(200,'Name','CriticActionFC1','BiasLearnRateFactor',0)];

commonPath = [
    additionLayer(2,'Name','add')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
    
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');
criticNetwork = dlnetwork(criticNetwork);

View the critic network configuration.

figure
plot(layerGraph(criticNetwork))
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Specify options for the critic representation using rlOptimizerOptions.

criticOptions = rlOptimizerOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation information for the critic, which you already obtained from the
environment interface. For more information, see rlQValueFunction.

critic = rlQValueFunction(criticNetwork,obsInfo,actInfo,...
    'ObservationInputNames','observation','ActionInputNames','action');

A DDPG agent decides which action to take, given observations, using an actor representation. To
create the actor, first create a deep neural network with one input (the observation) and one output
(the action).

Construct the actor in a similar manner to the critic. For more information, see
rlContinuousGaussianActor.

actorNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','observation')
    fullyConnectedLayer(128,'Name','ActorFC1')
    reluLayer('Name','ActorRelu1')
    fullyConnectedLayer(200,'Name','ActorFC2')
    reluLayer('Name','ActorRelu2')
    fullyConnectedLayer(1,'Name','ActorFC3')
    tanhLayer('Name','ActorTanh1')
    scalingLayer('Name','ActorScaling','Scale',max(actInfo.UpperLimit))];
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actorNetwork = dlnetwork(actorNetwork);

actorOptions = rlOptimizerOptions('LearnRate',5e-04,'GradientThreshold',1);

actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
    'SampleTime',Ts,...
    'ActorOptimizerOptions',actorOptions,...
    'CriticOptimizerOptions',criticOptions,...
    'ExperienceBufferLength',1e6,...
    'MiniBatchSize',128);
agentOptions.NoiseOptions.Variance = 0.4;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the agent using the specified actor representation, critic representation and agent
options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training episode for at most 2000 episodes, with each episode lasting at most
ceil(Tf/Ts) time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than –400 over five
consecutive episodes. At this point, the agent can quickly balance the pole in the upright position
using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than –400.

For more information, see rlTrainingOptions.

maxepisodes = 2000;
maxsteps = ceil(Tf/Ts);
trainingOptions = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'ScoreAveragingWindowLength',5,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-400,...
    'SaveAgentCriteria','EpisodeReward',...
    'SaveAgentValue',-400);

Train the agent using the train function. Training this agent process is computationally intensive
and takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
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if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOptions);
else
    % Load the pretrained agent for the example.
    load('SimscapeCartPoleDDPG.mat','agent')
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);
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bdclose(mdl)

See Also
rlDDPGAgent | rlSimulinkEnv | train

More About
• “Create Simulink Reinforcement Learning Environments” on page 2-8
• “Deep Deterministic Policy Gradient Agents” on page 3-29
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Train DDPG Agent to Swing Up and Balance Pendulum with Bus
Signal

This example shows how to convert a simple frictionless pendulum Simulink® model to a
reinforcement learning environment interface, and trains a deep deterministic policy gradient
(DDPG) agent in this environment.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
29. For an example showing how to train a DDPG agent in MATLAB®, see “Train DDPG Agent to
Control Double Integrator System” on page 5-47.

Pendulum Swing-Up Model with Bus

The starting model for this example is a simple frictionless pendulum. The training goal is to make
the pendulum stand upright without falling over using minimal control effort.

Open the model.

mdl = 'rlSimplePendulumModelBus';
open_system(mdl)

For this model:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.
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• The torque action signal from the agent to the environment is from –2 to 2 N·m.
• The observations from the environment are the sine of the pendulum angle, the cosine of the

pendulum angle, and the pendulum angle derivative.
• Both the observation and action signals are Simulink buses.
• The reward rt, provided at every time step, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.
• θṫ is the derivative of the displacement angle.
• ut − 1 is the control effort from the previous time step.

The model used in this example is similar to the simple pendulum model described in “Load
Predefined Simulink Environments” on page 2-30. The difference is that the model in this example
uses Simulink buses for the action and observation signals.

Create Environment Interface with Bus

The environment interface from a Simulink model is created using rlSimulinkEnv, which requires
the name of the Simulink model, the path to the agent block, and observation and action
reinforcement learning data specifications. For models that use bus signals for actions or
observations, you can create the corresponding specifications using the bus2RLSpec function.

Specify the path to the agent block.

agentBlk = 'rlSimplePendulumModelBus/RL Agent';

Create the observation Bus object.

obsBus = Simulink.Bus();
obs(1) = Simulink.BusElement;
obs(1).Name = 'sin_theta';
obs(2) = Simulink.BusElement;
obs(2).Name = 'cos_theta';
obs(3) = Simulink.BusElement;
obs(3).Name = 'dtheta';
obsBus.Elements = obs;

Create the action Bus object.

actBus = Simulink.Bus();
act(1) = Simulink.BusElement;
act(1).Name = 'tau';
act(1).Min = -2;
act(1).Max = 2;
actBus.Elements = act;

Create the action and observation specification objects using the Simulink buses.

obsInfo = bus2RLSpec('obsBus','Model',mdl);
actInfo = bus2RLSpec('actBus','Model',mdl);
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Create the reinforcement learning environment for the pendulum model.

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo);

To define the initial condition of the pendulum as hanging downward, specify an environment reset
function using an anonymous function handle. This reset function sets the model workspace variable
theta0 to pi.

env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);

Specify the simulation time Tf and the agent sample time Ts in seconds.

Ts = 0.05;
Tf = 20;

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent decides which action to take, given observations, using an actor representation. To
create the actor, first create a deep neural network with three inputs (the observations) and one
output (the action). The three observations can be combined using a concatenationLayer.

For more information on creating a deep neural network value function representation, see “Create
Policies and Value Functions” on page 4-2.

sinThetaInput = featureInputLayer(1,'Normalization','none','Name','sin_theta');
cosThetaInput = featureInputLayer(1,'Normalization','none','Name','cos_theta');
dThetaInput   = featureInputLayer(1,'Normalization','none','Name','dtheta');
commonPath = [
    concatenationLayer(1,3,'Name','concat')
    fullyConnectedLayer(400, 'Name','ActorFC1')
    reluLayer('Name','ActorRelu1')
    fullyConnectedLayer(300,'Name','ActorFC2')
    reluLayer('Name','ActorRelu2')
    fullyConnectedLayer(1,'Name','ActorFC3')
    tanhLayer('Name','ActorTanh1')
    scalingLayer('Name','ActorScaling1','Scale',max(actInfo.UpperLimit))];

actorNetwork = layerGraph(sinThetaInput);
actorNetwork = addLayers(actorNetwork,cosThetaInput);
actorNetwork = addLayers(actorNetwork,dThetaInput);
actorNetwork = addLayers(actorNetwork,commonPath);
    
actorNetwork = connectLayers(actorNetwork,'sin_theta','concat/in1');
actorNetwork = connectLayers(actorNetwork,'cos_theta','concat/in2');
actorNetwork = connectLayers(actorNetwork,'dtheta','concat/in3');

actorNetwork = dlnetwork(actorNetwork);

View the actor network configuration.

figure
plot(layerGraph(actorNetwork))
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Specify options for the critic representation using rlOptimizerOptions.

actorOptions = rlOptimizerOptions('LearnRate',1e-4,'GradientThreshold',1);

Create the actor representation using the specified deep neural network and options. You must also
specify the action and observation info for the actor, which you obtained from the environment
interface. For more information, see rlContinuousDeterministicActor.

actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo,...
    "ObservationInputNames",["sin_theta","cos_theta","dtheta"]);

A DDPG agent approximates the long-term reward given observations and actions using a critic value
function representation. To create the critic, first create a deep neural network with two inputs, the
observation and action, and one output, the state action value.

Construct the critic in a similar manner to the actor. For more information, see rlQValueFunction.

statePath = [
    concatenationLayer(1,3,'Name','concat')
    fullyConnectedLayer(400,'Name','CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(300,'Name','CriticStateFC2')];

actionPath = [
    featureInputLayer(1,'Normalization','none','Name', 'action')
    fullyConnectedLayer(300,'Name','CriticActionFC1','BiasLearnRateFactor', 0)];
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commonPath = [
    additionLayer(2,'Name','add')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph(sinThetaInput);
criticNetwork = addLayers(criticNetwork,cosThetaInput);
criticNetwork = addLayers(criticNetwork,dThetaInput);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'sin_theta','concat/in1');
criticNetwork = connectLayers(criticNetwork,'cos_theta','concat/in2');
criticNetwork = connectLayers(criticNetwork,'dtheta','concat/in3');
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

criticOptions = rlOptimizerOptions('LearnRate',1e-03,'GradientThreshold',1);

critic = rlQValueFunction(criticNetwork,obsInfo,actInfo,...
                         "ObservationInputNames",["sin_theta","cos_theta","dtheta"],"ActionInputNames","action");

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
    'SampleTime',Ts,...
    'ActorOptimizerOptions',actorOptions,...
    'CriticOptimizerOptions',criticOptions,...
    'ExperienceBufferLength',1e6,...
    'MiniBatchSize',128);
agentOpts.NoiseOptions.Variance = 0.6;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

Then create the DDPG agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training for at most 50000 episodes, with each episode lasting at most ceil(Tf/Ts)
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than –740 over five
consecutive episodes. At this point, the agent can quickly balance the pendulum in the upright
position using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than –740.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
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trainOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'ScoreAveragingWindowLength',5,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-740);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('SimulinkPendBusDDPG.mat','agent')
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions and sim.
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simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

See Also
rlDDPGAgent | rlSimulinkEnv | train | bus2RLSpec

More About
• “Create Simulink Reinforcement Learning Environments” on page 2-8
• “Deep Deterministic Policy Gradient Agents” on page 3-29
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Train Reinforcement Learning Agents To Control Quanser
QUBE™ Pendulum

This example trains reinforcement learning (RL) agents to swing up and control a Quanser QUBE™-
Servo 2 inverted pendulum system.

Inverted Pendulum Model

The Quanser QUBE™-Servo 2 pendulum system is an implementation of a rotational inverted
pendulum. It consists of a motor arm, which is actuated by a DC servo motor, with a freely swinging
pendulum arm attached to its end. The system is challenging to control because it is underactuated,
nonminimum phase, and highly nonlinear [1].

In this example, the pendulum system is modeled in Simulink using Simscape Electrical™ and
Simscape Multibody™ components. For this system:

• θ is the motor arm angle and φ is the pendulum angle.
• The motor arm angle is 0 radians when the arm is oriented horizontal and forward as shown in the

diagram (counterclockwise is positive).
• The pendulum angle is 0 radians when the pendulum is oriented vertically downwards

(counterclockwise is positive).
• Input of the plant model is a DC voltage signal for the motor. The voltage value ranges from –12 to

12 V.
• The pendulum and motor angles and angular velocities are measured by sensors.

Load the parameters for this example using the loadQubeParameters helper script.

loadQubeParameters

Open the Simulink model.

mdl = "rlQubeServo";
open_system(mdl)
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Control Structure

In this example, the RL agents generate reference trajectories, which are then passed to an inner
control loop.

Outer-Loop Components

The outer loop of the control architecture injects the pendulum angle reference signal to the inner
loop. It consists of the following reinforcement learning agents.

• Swing-up agent — A soft actor-critic (SAC) agent that computes reference angles for swinging up
the pendulum arm.

• Mode-select agent — A proximal policy optimization (PPO) agent that performs a mode switching
operation when the pendulum angle is close to the upright position (π ± π/6 radians).

The mode-switching action (0 or 1) switches the outer-loop reference signal between the trajectory
generated by the swing-up agent action and π radians.

Inner-Loop Components

The inner-loop components compute the low-level control input umotor (voltage) to stabilize the
pendulum at the upright equilibrium point where the system is linearizable. Two proportional-
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derivative (PD) controllers form the inner-loop control system as shown in the following figure. For
this example, the gains Pθ, Pdθ, Pφ, and Pdφ were tuned to 0.1620, 0.0356, 40, and 2, respectively.

Train Swing-Up Agent

The swing-up agent in this example is modeled using the soft actor-critic (SAC) algorithm. For this
agent:

• The environment is the pendulum system with the low-level controller. The mode-selection signal
is always set to 1.

• The observation is the vector sinθ, cosθ, sinφ, cosφ, θ̇, φ̇ .

• The action is the normalized outer-loop pendulum reference angle.
• The reward signal is as follows:

r = − θ2− 0 . 1 φ− θ 2− 0 . 1φ̇2 + F

F =
100 θ ∈ π ± π/6 radians and φ ∈ ± π radians
0 otherwise

Open the Outer Loop Control block and set the Design mode parameter to Swing up. Doing so sets
the mode-selection action to 1, which configures the Switch block to pass the swing-up reference to
the inner-loop controllers.

Alternatively, you can set this parameter using the following command.

set_param(mdl + "/Outer Loop Control","DesignModeChoice","Swing up");

Set the random seed for reproducibility.

rng(0)

Create the input and output specifications for the agent.

swingObsInfo = rlNumericSpec([6,1]);
swingActInfo = rlNumericSpec([1,1],"LowerLimit",-1,"UpperLimit",1);

Create the environment interface
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swingAgentBlk = ...
    mdl + "/Outer Loop Control/RL_Swing_Up/RL_agent_swing_up";
swingEnv = rlSimulinkEnv(mdl,swingAgentBlk,swingObsInfo,swingActInfo);

The agent trains from an experience buffer of maximum capacity 1e6 by randomly selecting mini-
batches of size 128. The discount factor of 0.99 is close to 1 and therefore favors long term reward
with respect to a smaller value. For a full list of SAC hyperparameters and their descriptions, see
rlSACAgent. Specify the agent hyperparameters for training.

swingAgentOpts = rlSACAgentOptions(...
    "SampleTime",Ts,...
    "TargetSmoothFactor",1e-3,...
    "ExperienceBufferLength",1e6,...
    "DiscountFactor",0.99,...
    "MiniBatchSize",128);

The actor and critic neural networks of the swing-up agent are updated by the Adam (adaptive
moment estimation) optimizer with the following configuration. Specify the optimizer options.

swingAgentOpts.ActorOptimizerOptions.Algorithm = "adam";
swingAgentOpts.ActorOptimizerOptions.LearnRate = 1e-4;
swingAgentOpts.ActorOptimizerOptions.GradientThreshold = 1;
for ct = 1:2
    swingAgentOpts.CriticOptimizerOptions(ct).Algorithm = "adam";
    swingAgentOpts.CriticOptimizerOptions(ct).LearnRate = 1e-3;
    swingAgentOpts.CriticOptimizerOptions(ct).GradientThreshold = 1;
    swingAgentOpts.CriticOptimizerOptions(ct).L2RegularizationFactor = 2e-4;
end

Create the agent.

initOptions = rlAgentInitializationOptions("NumHiddenUnit",300);
swingAgent = rlSACAgent(swingObsInfo,swingActInfo,initOptions,swingAgentOpts);

To train the agent, first specify the training options using rlTrainingOptions. For this example,
use the following options:

• Run each training for at most 1000 episodes, with each episode lasting at most floor(Tf/Ts)
time steps.

• Stop training when the agent receives an average cumulative reward greater than 7500 over 50
consecutive episodes.

swingTrainOpts = rlTrainingOptions(...
    "MaxEpisodes",1000,...
    "MaxStepsPerEpisode",floor(Tf/Ts),...
    "ScoreAveragingWindowLength",50,...
    "Plots","training-progress",...
    "StopTrainingCriteria","AverageReward",...
    "StopTrainingValue",7500);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doSwingTraining to false. To train the agent yourself, set doSwingTraining to
true.

doSwingTraining = false;
if doSwingTraining
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    swingTrainResult = train(swingAgent,swingEnv,swingTrainOpts);
else
    load("rlQubeServoAgents.mat","swingAgent");
end

Train Mode-Select Agent

The mode-select agent in this example is modeled using the proximal policy optimization (PPO)
algorithm. For this agent:

• The environment is the pendulum system with the low-level controller and the swing-up agent.
• The observation is the vector sinθ, cosθ, sinφ, cosφ, θ̇, φ̇ .

• The action is 0 or 1 which determines which reference signal is sent to the PD controller.
• The reward signal is as follows:

r = − θ2 + G

G =
1 θ ∈ π ± π/6 radians
0 otherwise

Open the Outer Loop Control block and set the Design mode parameter to Mode select.

Alternatively, you can set this parameter using the following command.
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set_param(mdl + "/Outer Loop Control","DesignModeChoice","Mode select");

Create the input and output specifications for the agent.

modeObsInfo = rlNumericSpec([6,1]);
modeActInfo = rlFiniteSetSpec({0,1});

Create the environment.

modeAgentBlk = ...
    mdl + "/Outer Loop Control/RL_Mode_Select/RL_agent_select_mode";
modeEnv = rlSimulinkEnv(mdl,modeAgentBlk,modeObsInfo,modeActInfo);

The mode-select agent trains by first collecting trajectories up to the experience horizon of
floor(Tf/Ts) steps. It then learns from the trajectory data using a mini-batch size of 128. The
discount factor of 0.99 favors long-term reward and an entropy loss weight of 1e-4 facilities
exploration during training.

Specify the hyperparameters for the agent. For more information on PPO agent options, see
rlPPOAgentOptions.

modeAgentOpts = rlPPOAgentOptions(...
    "SampleTime",Ts,...
    "DiscountFactor",0.99,...
    "ExperienceHorizon",floor(Tf/Ts), ...
    "MiniBatchSize",500, ...
    "EntropyLossWeight",1e-4);

The actor and critic neural networks of the mode-select agent are updated by the Adam optimizer
with the following configuration. Specify the optimizer options.

modeAgentOpts.ActorOptimizerOptions.LearnRate = 1e-4;
modeAgentOpts.ActorOptimizerOptions.GradientThreshold = 1;
modeAgentOpts.CriticOptimizerOptions.LearnRate = 1e-4;

Create the agent.

initOptions = rlAgentInitializationOptions("NumHiddenUnit",300);
modeAgent = rlPPOAgent(modeObsInfo,modeActInfo,initOptions,modeAgentOpts);

To train the agent, first specify the training options using rlTrainingOptions. For this example,
use the following options:

• Run each training for at most 1000 episodes with each episode lasting at most floor(Tf/Ts)
time steps.

• Stop training when the agent receives an average cumulative reward greater than 430 over 50
consecutive episodes.

modeTrainOpts = rlTrainingOptions(...
    "MaxEpisodes",10000,...
    "MaxStepsPerEpisode",floor(Tf/Ts),...
    "ScoreAveragingWindowLength",50,...
    "Plots","training-progress",...
    "StopTrainingCriteria","AverageReward",...
    "StopTrainingValue",430);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
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agent by setting doModeTraining to false. To train the agent yourself, set doModeTraining to
true.

doModeTraining = false;
if doModeTraining
    modeTrainResult = train(modeAgent,modeEnv,modeTrainOpts);
else
    load("rlQubeServoAgents.mat","modeAgent");
end

Simulation

Reset the random seed.

rng(0)

Ensure that the Outer Loop Control block is configured for mode-selection. Then, simulate the model.

set_param(mdl + "/Outer Loop Control","DesignModeChoice","Mode select");
sim(mdl);

View the performance of the agents in the Simulation Data Inspector. To open the Simulation Data
Inspector, in the Simulink model window, on the Simulation tab, in the Review Results gallery, click
Data Inspector.
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In the plots:

• The measured values for θ (sensor(1)) and φ (sensor(2)) are stabilized at 0 and π radians
respectively. The pendulum is stabilized at the upright equilibrium position.

• The action_RL_select_mode signal shows the mode switching operation and the
action_RL_swing_up signal shows the swing up reference angles.

• The low-level control input is shown by the volt signal.

References

[1] Cazzolato, Benjamin Seth, and Zebb Prime. ‘On the Dynamics of the Furuta Pendulum’. Journal of
Control Science and Engineering 2011 (2011): 1–8.
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Run SIL and PIL Verification for Reinforcement Learning
This example shows how to perform software-in-the-loop (SIL) and processor-in-the-loop (PIL)
verification workflows for reinforcement learning agents in Simulink®.

This example requires the following hardware.

• Raspberry Pi hardware.
• WIFI dongle or an Ethernet cable.
• Power source connected to a micro USB cable.

You must also download and install the following support packages using the Add-Ons Explorer.

• Simulink Support Package for Raspberry Pi Hardware. Follow the “Getting Started with Simulink
Support Package for Raspberry Pi Hardware” (Simulink Support Package for Raspberry Pi
Hardware) example to set up Raspberry Pi hardware.

• MATLAB® Coder™ Interface for Deep Learning. This will install the Intel® MKL-DNN and Arm®
Compute libraries.

Simulink Environment

The environment for this example is a Quanser QUBE™-Servo 2 pendulum swing-up model. The
swing-up and balancing actions are performed by a combination of proportional-derivative (PD)
controllers and reinforcement learning (RL) agents. In this example, you will simulate the controllers
in software-in-the-loop (SIL) and processor-in-the-loop (PIL) verification modes and compare the
results with normal simulation. For more information, see “SIL and PIL Simulations” (Embedded
Coder).

Load the parameters for the environment.

loadQubeParameters

The top level model consists of the controller model reference and the pendulum environment. Open
the model.

mdl = "rlQubeServo_SIL_PIL";
open_system(mdl)
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Open the controller model reference.

open_system("Controller")

The overall control system consists of two RL Agents in the outer loop computing high level reference
angles. The reference angles are sent to a low-level controller that stabilizes the pendulum system by
computing the motor voltage. For more information on the controller design and training, see “Train
Reinforcement Learning Agents To Control Quanser QUBE™ Pendulum” on page 5-81.

Policy Evaluation

To generate code and deploy reinforcement learning policies to hardware, you can use one of the
following methods.

1 Evaluate the policy using the Deep Learning Toolbox Predict block.
2 Evaluate the policy by generating MATLAB® code using generatePolicyFunction. This

option is used in this example.

Load the RL agents from the rlQubeServoSILPILAgents.mat file.

load("rlQubeServoSILPILAgents.mat","swingAgent","modeAgent");

Generate the following policy evaluation functions.

1 evaluateAgentSelectPolicy — For selecting the outer-loop pendulum reference angle
2 evaluateAgentSwingPolicy — For oscillating and swinging up the pendulum.

generatePolicyFunction(swingAgent,...
    "MATFileName","policy_swing.mat",...
    "FunctionName","evaluateAgentSwingPolicy");
generatePolicyFunction(modeAgent,...
    "MATFileName","policy_select.mat",...
    "FunctionName","evaluateAgentSelectPolicy");

Open the Outer Loop Control subsystem to choose the model evaluation method and select RL from
the dropdown menu. Doing so activates policy execution using generated MATLAB code.
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Alternatively, you can set this parameter using the following command.

set_param("Controller/Outer Loop Control","VChoice","RL");

The generated functions evaluateAgentSelectPolicy and evaluateAgentSwingPolicy are
executed inside the Outer Loop Control subsystem using MATLAB Function blocks.

Software-in-the-Loop Simulation

You can analyze code generation performance using software-in-the-loop (SIL) simulation. A SIL
simulation generates and builds code on your development computer and then simulates the system
using the generated code. You can then compare the results with the ones obtained from a Normal
mode simulation.

Configure Controller for SIL Simulation

The following steps show how to configure code generation settings in Simulink for SIL simulation.
You can skip these steps and use preconfigured settings with the following command, which sets the
appropriate configuration reference for SIL simulation.

setActiveConfigSet("Controller","configSILReferenceRL");

Otherwise,

• Open the Controller model.
• In the Simulink model window, on the Modeling tab, click Model Settings.
• In the Configuration Parameters window, in the Solver section, set the Type parameter to Fixed-

step and Solver parameter to discrete. Set the Fixed-step size parameter to ts_PID, which is
0.005 s.

• In the Simulation Target section, set the Language parameter to C++ and the Target Library
parameter to MKL-DNN. If using the Deep Learning Toolbox Predict block for evaluation, set
Language to C.

• In the Code Generation section, set the System target file parameter to ert.tlc and the
Language parameter to C. Also, select an appropriate Toolchain parameter.

 Run SIL and PIL Verification for Reinforcement Learning

5-91



• Optionally, you can set the Language to C++ and set the Target library in the Code Generation
> Interface section to MKL-DNN. Doing so generates C++ code for the controller.

• Save the model.

View Generated Code

Optionally, you can view the generated code for the controller from the C-code perspective.

• In the Simulink model window, on the Apps tab, in the gallery, click Embedded Coder.
• To generate code and display it in the Code panel, on the C Code tab, click Build,.
• Ensure that there are no errors in this process. You can reconfigure the code generation settings

to optimize the generated code.

Configure Top-Level Model for SIL Simulation

Open the top-level model rlQubeServo_SIL_PIL.slx and specify the simulation mode for the
Controller model reference.

To configure the simulation mode of the Controller model reference, right-click the Controller
subsystem and select Block Parameters. Then, in the Block Parameters dialog box, set the
Simulation mode parameter to Software-in-the-loop (SIL).

Run SIL Simulation

To run the SIL simulation, on the Apps tab, click SIL/PIL Manager.

On the SIL/PIL tab, in the System Under Test drop-down menu, select Model blocks in
SIL/PIL mode. Then, in the Top Model Mode, select Normal.

To simulate the model, generate and run the code in a SIL simulation, and compare the results, click
Run Verification. The results are shown in the Simulink Data Inspector.

A comparison of controller output values is shown between Normal and SIL simulations. The error
tolerances are acceptable for this example.
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Processor-in-the-Loop Simulation

In a processor-in-the-loop (PIL) simulation, you can generate code for the target hardware (in this
case the Raspberry Pi), and deploy and run the code from the hardware. The results of the PIL
simulation are transferred to Simulink to verify the numerical equivalence of the simulation and the
code generation results. The PIL verification process is an important part of the design cycle to
ensure that the behavior of the deployment code matches the design.

Configure Controller for PIL Simulation

To set up PIL simulation:

• Connect the Raspberry Pi to the host computer and power it on.
• Execute the raspi (MATLAB Support Package for Raspberry Pi Hardware) command in MATLAB

to ensure that the hardware is connected. This command also displays the device address.

Follow the configuration steps from the SIL simulation workflow. You can alternatively use
preconfigured settings with the following command.

setActiveConfigSet("Controller","configPILReference");

In addition to these settings, in the Configuration Parameters dialog box, in the Hardware
Implementation section, set the Hardware board parameter to Raspberry Pi and enter the
board parameters. Specify the Device Address, Username, and Password as parameters to
appropriate values.
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To configure the top-level model for PIL simulation, first open the top-level model
rlQubeServo_SIL_PIL.slx.

Then, right-click the Controller subsystem and select Block Parameters. In the Block Parameters
dialog box, set the Simulation mode parameter to Processor-in-the-loop (PIL).

Run PIL Simulation

To run the PIL simulation, on the Apps tab, click SIL/PIL Manager.

On the SIL/PIL tab, in the System Under Test drop-down menu, select Model blocks in
SIL/PIL mode. Then, in the Top Model Mode, select Normal.

To simulate the model, generate and run the code on the hardware, and compare the results, click
Run Verification. The results are shown in the Simulink Data Inspector.

A comparison of controller output values is shown between Normal and PIL simulations. The error
tolerances are acceptable for this example.
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Train DDPG Agent to Swing Up and Balance Pendulum with
Image Observation

This example shows how to train a deep deterministic policy gradient (DDPG) agent to swing up and
balance a pendulum with an image observation modeled in MATLAB®.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
29.

Simple Pendulum with Image MATLAB Environment

The reinforcement learning environment for this example is a simple frictionless pendulum that
initially hangs in a downward position. The training goal is to make the pendulum stand upright
without falling over using minimal control effort.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The torque action signal from the agent to the environment is from –2 to 2 N·m.
• The observations from the environment are an image indicating the location of the pendulum mass

and the pendulum angular velocity.
• The reward rt, provided at every time step, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.
• θṫ is the derivative of the displacement angle.
• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
23.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumWithImage-Continuous')

env = 
  SimplePendlumWithImageContinuousAction with properties:

             Mass: 1
        RodLength: 1
       RodInertia: 0
          Gravity: 9.8100
     DampingRatio: 0
    MaximumTorque: 2
               Ts: 0.0500
            State: [2x1 double]
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                Q: [2x2 double]
                R: 1.0000e-03

The interface has a continuous action space where the agent can apply a torque between –2 to 2 N·m.

Obtain the observation and action specification from the environment interface.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward, given observations and actions, using a critic
value function representation. To create the critic, first create a deep convolutional neural network
(CNN) with three inputs (the image, angular velocity, and action) and one output. For more
information on creating representations, see “Create Policies and Value Functions” on page 4-2.

hiddenLayerSize1 = 400;
hiddenLayerSize2 = 300;

imgPath = [
    imageInputLayer(obsInfo(1).Dimension,'Normalization','none','Name',obsInfo(1).Name)
    convolution2dLayer(10,2,'Name','conv1','Stride',5,'Padding',0)
    reluLayer('Name','relu1')
    fullyConnectedLayer(2,'Name','fc1')
    concatenationLayer(3,2,'Name','cat1')
    fullyConnectedLayer(hiddenLayerSize1,'Name','fc2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(hiddenLayerSize2,'Name','fc3')
    additionLayer(2,'Name','add')
    reluLayer('Name','relu3')
    fullyConnectedLayer(1,'Name','fc4')
    ];
dthetaPath = [
    imageInputLayer(obsInfo(2).Dimension,'Normalization','none','Name',obsInfo(2).Name)
    fullyConnectedLayer(1,'Name','fc5','BiasLearnRateFactor',0,'Bias',0)
    ];
actPath =[
    imageInputLayer(actInfo(1).Dimension,'Normalization','none','Name','action')
    fullyConnectedLayer(hiddenLayerSize2,'Name','fc6','BiasLearnRateFactor',0,'Bias',zeros(hiddenLayerSize2,1))
    ];

criticNetwork = layerGraph(imgPath);
criticNetwork = addLayers(criticNetwork,dthetaPath);
criticNetwork = addLayers(criticNetwork,actPath);
criticNetwork = connectLayers(criticNetwork,'fc5','cat1/in2');
criticNetwork = connectLayers(criticNetwork,'fc6','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)
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Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Uncomment the following line to use the GPU to accelerate training of the critic CNN. For more
information on supported GPUs, see “GPU Support by Release” (Parallel Computing Toolbox).

% criticOptions.UseDevice = 'gpu';

Create the critic representation using the specified neural network and options. You must also specify
the action and observation info for the critic, which you obtain from the environment interface. For
more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation',{'pendImage','angularRate'},'Action',{'action'},criticOptions);

A DDPG agent decides which action to take given observations using an actor representation. To
create the actor, first create a deep convolutional neural network (CNN) with two inputs (the image
and angular velocity) and one output (the action).

Construct the actor in a similar manner to the critic.

imgPath = [
    imageInputLayer(obsInfo(1).Dimension,'Normalization','none','Name',obsInfo(1).Name)
    convolution2dLayer(10,2,'Name','conv1','Stride',5,'Padding',0)
    reluLayer('Name','relu1')
    fullyConnectedLayer(2,'Name','fc1')
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    concatenationLayer(3,2,'Name','cat1')
    fullyConnectedLayer(hiddenLayerSize1,'Name','fc2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(hiddenLayerSize2,'Name','fc3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(1,'Name','fc4')
    tanhLayer('Name','tanh1')
    scalingLayer('Name','scale1','Scale',max(actInfo.UpperLimit))
    ];
dthetaPath = [
    imageInputLayer(obsInfo(2).Dimension,'Normalization','none','Name',obsInfo(2).Name)
    fullyConnectedLayer(1,'Name','fc5','BiasLearnRateFactor',0,'Bias',0)
    ];

actorNetwork = layerGraph(imgPath);
actorNetwork = addLayers(actorNetwork,dthetaPath);
actorNetwork = connectLayers(actorNetwork,'fc5','cat1/in2');

actorOptions = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

Uncomment the following line to use the GPU to accelerate training of the actor CNN.

% actorOptions.UseDevice = 'gpu';

Create the actor representation using the specified neural network and options. For more
information, see rlDeterministicActorRepresentation.

actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'pendImage','angularRate'},'Action',{'scale1'},actorOptions);

View the actor network configuration.

figure
plot(actorNetwork)
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To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
    'SampleTime',env.Ts,...
    'TargetSmoothFactor',1e-3,...
    'ExperienceBufferLength',1e6,...
    'DiscountFactor',0.99,...
    'MiniBatchSize',128);
agentOptions.NoiseOptions.Variance = 0.6;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-6;

Then create the agent using the specified actor representation, critic representation, and agent
options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 5000 episodes, with each episode lasting at most 400 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option).
• Stop training when the agent receives a moving average cumulative reward greater than -740

over ten consecutive episodes. At this point, the agent can quickly balance the pendulum in the
upright position using minimal control effort.

For more information, see rlTrainingOptions.
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maxepisodes = 5000;
maxsteps = 400;
trainingOptions = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-740);

You can visualize the pendulum by using the plot function during training or simulation.

plot(env)

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOptions);
else
    % Load pretrained agent for the example.
    load('SimplePendulumWithImageDDPG.mat','agent')       
end
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Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);
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See Also
train

More About
• “Deep Deterministic Policy Gradient Agents” on page 3-29
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Policies and Value Functions” on page 4-2
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Create Agent Using Deep Network Designer and Train Using
Image Observations

This example shows how to create a deep Q-learning network (DQN) agent that can swing up and
balance a pendulum modeled in MATLAB®. In this example, you create the DQN agent using Deep
Network Designer. For more information on DQN agents, see “Deep Q-Network Agents” on page 3-
21.

Pendulum Swing-Up with Image MATLAB Environment

The reinforcement learning environment for this example is a simple frictionless pendulum that
initially hangs in a downward position. The training goal is to make the pendulum stand upright
without falling over using minimal control effort.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The torque action signal from the agent to the environment is from –2 to 2 N·m.
• The observations from the environment are the simplified grayscale image of the pendulum and

the pendulum angle derivative.
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• The reward rt, provided at every time step, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.
• θṫ is the derivative of the displacement angle.
• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Train DDPG Agent to Swing Up and Balance Pendulum with
Image Observation” on page 5-95.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumWithImage-Discrete');

The interface has two observations. The first observation, named "pendImage", is a 50-by-50
grayscale image.

obsInfo = getObservationInfo(env);
obsInfo(1)

ans = 
  rlNumericSpec with properties:

     LowerLimit: 0
     UpperLimit: 1
           Name: "pendImage"
    Description: [0x0 string]
      Dimension: [50 50]
       DataType: "double"

The second observation, named "angularRate", is the angular velocity of the pendulum.

obsInfo(2)

ans = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "angularRate"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

The interface has a discrete action space where the agent can apply one of five possible torque values
to the pendulum: –2, –1, 0, 1, or 2 N·m.

actInfo = getActionInfo(env)
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actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [-2 -1 0 1 2]
           Name: "torque"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

Fix the random generator seed for reproducibility.

rng(0)

Construct Critic Network Using Deep Network Designer

A DQN agent approximates the long-term reward, given observations and actions, using a critic value
function representation. For this environment, the critic is a deep neural network with three inputs
(two observations and one action), and one output. For more information on creating a deep neural
network value function representation, see “Create Policies and Value Functions” on page 4-2.

You can construct the critic network interactively by using the Deep Network Designer app. To do so,
you first create separate input paths for each observation and action. These paths learn lower-level
features from their respective inputs. You then create a common output path that combines the
outputs from the input paths.

Create Image Observation Path

To create the image observation path, first drag an imageInputLayer from the Layer Library pane
to the canvas. Set the layer InputSize to 50,50,1 for the image observation, and set Normalization
to none.
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Second, drag a convolution2DLayer to the canvas and connect the input of this layer to the output
of the imageInputLayer. Create a convolution layer with 2 filters (NumFilters property) that have a
height and width of 10 (FilterSize property), and use a stride of 5 in the horizontal and vertical
directions (Stride property).
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Finally, complete the image path network with two sets of reLULayer and fullyConnectedLayer
layers. The output sizes of the first and second fullyConnectedLayer layers are 400 and 300,
respectively.

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-107



Create All Input Paths and Output Path

Construct the other input paths and output path in a similar manner. For this example, use the
following options.

Angular velocity path (scalar input):

• imageInputLayer — Set InputSize to 1,1 and Normalization to none.
• fullyConnectedLayer — Set OutputSize to 400.
• reLULayer
• fullyConnectedLayer — Set OutputSize to 300.

Action path (scalar input):

• imageInputLayer — Set InputSize to 1,1 and Normalization to none.
• fullyConnectedLayer — Set OutputSize to 300.

Output path:

• additionLayer — Connect the output of all input paths to the input of this layer.
• reLULayer
• fullyConnectedLayer — Set OutputSize to 1 for the scalar value function.
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Export Network from Deep Network Designer

To export the network to the MATLAB workspace, in Deep Network Designer, click Export. Deep
Network Designer exports the network as a new variable containing the network layers. You can
create the critic representation using this layer network variable.

Alternatively, to generate equivalent MATLAB code for the network, click Export > Generate Code.

The generated code is as follows.

lgraph = layerGraph();

tempLayers = [
    imageInputLayer([1 1 1],"Name","angularRate","Normalization","none")
    fullyConnectedLayer(400,"Name","dtheta_fc1")
    reluLayer("Name","dtheta_relu1")
    fullyConnectedLayer(300,"Name","dtheta_fc2")];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    imageInputLayer([1 1 1],"Name","torque","Normalization","none")
    fullyConnectedLayer(300,"Name","torque_fc1")];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    imageInputLayer([50 50 1],"Name","pendImage","Normalization","none")
    convolution2dLayer([10 10],2,"Name","img_conv1","Padding","same","Stride",[5 5])
    reluLayer("Name","relu_1")
    fullyConnectedLayer(400,"Name","critic_theta_fc1")
    reluLayer("Name","theta_relu1")
    fullyConnectedLayer(300,"Name","critic_theta_fc2")];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    additionLayer(3,"Name","addition")
    reluLayer("Name","relu_2")
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    fullyConnectedLayer(1,"Name","stateValue")];
lgraph = addLayers(lgraph,tempLayers);

lgraph = connectLayers(lgraph,"torque_fc1","addition/in3");
lgraph = connectLayers(lgraph,"critic_theta_fc2","addition/in1");
lgraph = connectLayers(lgraph,"dtheta_fc2","addition/in2");

View the critic network configuration.

figure
plot(lgraph)

Specify options for the critic representation using rlOptimizerOptions.

criticOpts = rlOptimizerOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network lgraph and options. You
must also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlQValueFunction.

net = dlnetwork(lgraph);
critic = rlQValueFunction(net,obsInfo,actInfo,...
    "ObservationInputNames",["pendImage","angularRate"],"ActionInputNames","torque");

To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.

agentOpts = rlDQNAgentOptions(...
    'UseDoubleDQN',false,...    
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    'CriticOptimizerOptions',criticOpts,...
    'ExperienceBufferLength',1e6,... 
    'SampleTime',env.Ts);
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-5;

Then, create the DQN agent using the specified critic representation and agent options. For more
information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 5000 episodes, with each episode lasting at most 500 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option) and

disable the command line display (set the Verbose option to false).
• Stop training when the agent receives an average cumulative reward greater than –1000 over the

default window length of five consecutive episodes. At this point, the agent can quickly balance
the pendulum in the upright position using minimal control effort.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',5000,...
    'MaxStepsPerEpisode',500,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-1000);

You can visualize the pendulum system during training or simulation by using the plot function.

plot(env)
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Train the agent using the train function. This is a computationally intensive process that takes
several hours to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load pretrained agent for the example.
    load('MATLABPendImageDQN.mat','agent');
end
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Simulate DQN Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);
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totalReward = sum(experience.Reward)

totalReward = -888.9802

See Also
Deep Network Designer | rlDQNAgent

More About
• “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-53
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Train AC Agent to Balance Cart-Pole System Using Parallel
Computing

This example shows how to train an actor-critic (AC) agent to balance a cart-pole system modeled in
MATLAB® by using asynchronous parallel training. For an example that shows how to train the agent
without using parallel training, see “Train AC Agent to Balance Cart-Pole System” on page 5-35.

Actor Parallel Training

When you use parallel computing with AC agents, each worker generates experiences from its copy of
the agent and the environment. After every N steps, the worker computes gradients from the
experiences and sends the computed gradients back to the client agent (the agent associated with the
MATLAB® process which starts the training). The client agent updates its parameters as follows.

• For asynchronous training, the client agent applies the received gradients without waiting for all
workers to send gradients, and sends the updated parameters back to the worker that provided
the gradients. Then, the worker continues to generate experiences from its environment using the
updated parameters.

• For synchronous training, the client agent waits to receive gradients from all of the workers and
updates its parameters using these gradients. The client then sends updated parameters to all the
workers at the same time. Then, all workers continue to generate experiences using the updated
parameters.

For more information about synchronous versus asynchronous parallelization, see “Train Agents
Using Parallel Computing and GPUs” on page 5-8.

Create Cart-Pole MATLAB Environment Interface

Create a predefined environment interface for the cart-pole system. For more information on this
environment, see “Load Predefined Control System Environments” on page 2-23.

env = rlPredefinedEnv("CartPole-Discrete");
env.PenaltyForFalling = -10;

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create AC Agent

An AC agent approximates the long-term reward, given observations and actions, using a critic value
function representation. To create the critic, first create a deep neural network with one input (the
observation) and one output (the state value). The input size of the critic network is 4 since the
environment provides 4 observations. For more information on creating a deep neural network value
function representation, see “Create Policies and Value Functions” on page 4-2.

criticNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(32,'Name','CriticStateFC1')
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    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(1, 'Name', 'CriticFC')];

criticOpts = rlOptimizerOptions('LearnRate',1e-2,'GradientThreshold',1);

critic = rlValueFunction(criticNetwork,obsInfo);

An AC agent decides which action to take, given observations, using an actor representation. To
create the actor, create a deep neural network with one input (the observation) and one output (the
action). The output size of the actor network is 2 since the agent can apply 2 force values to the
environment, –10 and 10.

actorNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(32, 'Name','ActorStateFC1')
    reluLayer('Name','ActorRelu1')
    fullyConnectedLayer(2,'Name','action')];

actorOpts = rlOptimizerOptions('LearnRate',1e-2,'GradientThreshold',1);

actor = rlDiscreteCategoricalActor(actorNetwork,obsInfo,actInfo);

To create the AC agent, first specify the AC agent options using rlACAgentOptions.

agentOpts = rlACAgentOptions(...
    'ActorOptimizerOptions',actorOpts,...
    'CriticOptimizerOptions',criticOpts,...
    'EntropyLossWeight',0.01);

Then create the agent using the specified actor representation and agent options. For more
information, see rlACAgent.

agent = rlACAgent(actor,critic,agentOpts);

Parallel Training Options

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 1000 episodes, with each episode lasting at most 500 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option) and

disable the command line display (set the Verbose option).
• Stop training when the agent receives an average cumulative reward greater than 500 over 10

consecutive episodes. At this point, the agent can balance the pendulum in the upright position.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',1000,...
    'MaxStepsPerEpisode', 500,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',500,...
    'ScoreAveragingWindowLength',10); 

You can visualize the cart-pole system can during training or simulation using the plot function.

plot(env)
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To train the agent using parallel computing, specify the following training options.

• Set the UseParallel option to True.
• Train the agent in parallel asynchronously by setting the ParallelizationOptions.Mode

option to "async".

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = "async";

For more information, see rlTrainingOptions.

Train Agent

Train the agent using the train function. Training the agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true. Due to
randomness in the asynchronous parallel training, you can expect different training results from the
following training plot. The plot shows the result of training with six workers.

doTraining = false;

if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('MATLABCartpoleParAC.mat','agent');
end
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Simulate AC Agent

You can visualize the cart-pole system with the plot function during simulation.

plot(env)

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);
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totalReward = sum(experience.Reward)

totalReward = 500
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Train DDPG Agent to Control Flying Robot
This example shows how to train a deep deterministic policy gradient (DDPG) agent to generate
trajectories for a flying robot modeled in Simulink®. For more information on DDPG agents, see
“Deep Deterministic Policy Gradient Agents” on page 3-29.

Flying Robot Model

The reinforcement learning environment for this example is a flying robot with its initial condition
randomized around a ring of radius 15 m. The orientation of the robot is also randomized. The robot
has two thrusters mounted on the side of the body that are used to propel and steer the robot. The
training goal is to drive the robot from its initial condition to the origin facing east.

Open the model.

mdl = 'rlFlyingRobotEnv';
open_system(mdl)

Set the initial model state variables.

theta0 = 0;
x0 = -15;
y0 = 0;

Define the sample time Ts and the simulation duration Tf.

Ts = 0.4;
Tf = 30;

For this model:

• The goal orientation is 0 rad (robot facing east).
• The thrust from each actuator is bounded from -1 to 1 N
• The observations from the environment are the position, orientation (sine and cosine of

orientation), velocity, and angular velocity of the robot.
• The reward rt provided at every time step is

r1 = 10 xt
2 + yt

2 + θt 2 < 0 . 5

r2 = − 100 xt ≥ 20 yt ≥ 20

r3 = − 0 . 2 Rt − 1 + Lt − 1
2 + 0 . 3 Rt − 1− Lt − 1

2 + 0 . 03xt
2 + 0 . 03yt

2 + 0 . 02θt 2

rt = r1 + r2 + r3

where:

• xt is the position of the robot along the x-axis.
• yt is the position of the robot along the y-axis.
• θ t is the orientation of the robot.
• Lt − 1 is the control effort from the left thruster.
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• Rt − 1 is the control effort from the right thruster.
• r1 is the reward when the robot is close to the goal.
• r2 is the penalty when the robot drives beyond 20 m in either the x or y direction. The simulation

is terminated when r2 < 0.
• r3 is a QR penalty that penalizes distance from the goal and control effort.

Create Integrated Model

To train an agent for the FlyingRobotEnv model, use the createIntegratedEnv function to
automatically generate an integrated model with the RL Agent block that is ready for training.

integratedMdl = 'IntegratedFlyingRobot';
[~,agentBlk,observationInfo,actionInfo] = createIntegratedEnv(mdl,integratedMdl);

Actions and Observations

Before creating the environment object, specify names for the observation and action specifications,
and bound the thrust actions between -1 and 1.

The observation signals for this environment are observation = x y ẋ ẏ sin θ cos θ θ̇ T.

numObs = prod(observationInfo.Dimension);
observationInfo.Name = 'observations';

The action signals for this environment are action = TR TL
T .

numAct = prod(actionInfo.Dimension);
actionInfo.LowerLimit = -ones(numAct,1);
actionInfo.UpperLimit =  ones(numAct,1);
actionInfo.Name = 'thrusts';

Create Environment Interface

Create an environment interface for the flying robot using the integrated model.

env = rlSimulinkEnv(integratedMdl,agentBlk,observationInfo,actionInfo);

Reset Function

Create a custom reset function that randomizes the initial position of the robot along a ring of radius
15 m and the initial orientation. For details on the reset function, see flyingRobotResetFcn.

env.ResetFcn = @(in) flyingRobotResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions by using a critic
value function representation. To create the critic, first create a deep neural network with two inputs
(the observation and action) and one output. For more information on creating a neural network value
function representation, see “Create Policies and Value Functions” on page 4-2.

5 Train and Validate Agents

5-122



% Specify the number of outputs for the hidden layers.
hiddenLayerSize = 100; 

observationPath = [
    featureInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc2')
    additionLayer(2,'Name','add')
    reluLayer('Name','relu2')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(1,'Name','fc4')];
actionPath = [
    featureInputLayer(numAct,'Normalization','none','Name','action')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc5')];

% Create the layer graph.
criticNetwork = layerGraph(observationPath);
criticNetwork = addLayers(criticNetwork,actionPath);

% Connect actionPath to observationPath.
criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');

% Create dlnetwork from layer graph
criticNetwork = dlnetwork(criticNetwork);

Specify options for the critic using rlOptimizerOptions.

criticOptions = rlOptimizerOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. You must also specify
the action and observation specification for the critic. For more information, see
rlQValueFunction.

critic = rlQValueFunction(criticNetwork,observationInfo,actionInfo,...
    'ObservationInputNames','observation','ActionInputNames','action');

A DDPG agent decides which action to take given observations by using an actor representation. To
create the actor, first create a deep neural network with one input (the observation) and one output
(the action).

Construct the actor similarly to the critic. For more information, see
rlContinuousDeterministicActor.

actorNetwork = [
    featureInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numAct,'Name','fc4')
    tanhLayer('Name','tanh1')];
actorNetwork = dlnetwork(actorNetwork);

actorOptions = rlOptimizerOptions('LearnRate',1e-04,'GradientThreshold',1);
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actor = rlContinuousDeterministicActor(actorNetwork,observationInfo,actionInfo);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
    'SampleTime',Ts,...
    'ActorOptimizerOptions',actorOptions,...
    'CriticOptimizerOptions',criticOptions,...
    'ExperienceBufferLength',1e6 ,...
    'MiniBatchSize',256);
agentOptions.NoiseOptions.Variance = 1e-1;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-6;

Then, create the agent using the specified actor representation, critic representation, and agent
options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training for at most 20000 episodes, with each episode lasting at most ceil(Tf/Ts)
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 415 over 10
consecutive episodes. At this point, the agent can drive the flying robot to the goal position.

• Save a copy of the agent for each episode where the cumulative reward is greater than 415.

For more information, see rlTrainingOptions.

maxepisodes = 20000;
maxsteps = ceil(Tf/Ts);
trainingOptions = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'StopOnError',"on",...
    'Verbose',false,...
    'Plots',"training-progress",...
    'StopTrainingCriteria',"AverageReward",...
    'StopTrainingValue',415,...
    'ScoreAveragingWindowLength',10,...
    'SaveAgentCriteria',"EpisodeReward",...
    'SaveAgentValue',415); 

Train the agent using the train function. Training is a computationally intensive process that takes
several hours to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOptions);
else
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    % Load the pretrained agent for the example.
    load('FlyingRobotDDPG.mat','agent')       
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate the agent within the environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',maxsteps);
experience = sim(env,agent,simOptions);
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See Also
train | rlDDPGAgent

More About
• “Train Reinforcement Learning Agents” on page 5-3
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Train PPO Agent to Land Rocket
This example shows how to train a proximal policy optimization (PPO) agent with a discrete action
space to land a rocket on the ground. For more information on PPO agents, see “Proximal Policy
Optimization Agents” on page 3-42.

Environment

The environment in this example is a 3-DOF rocket represented by a circular disc with mass. The
rocket has two thrusters for forward and rotational motion. Gravity acts vertically downwards, and
there are no aerodynamic drag forces. The training goal is to make the robot land on the ground at a
specified location.

For this environment:

• Motion of the rocket is bounded in X (horizontal axis) from -100 to 100 meters and Y (vertical axis)
from 0 to 120 meters.

• The goal position is at (0,0) meters and the goal orientation is 0 radians.
• The maximum thrust applied by each thruster is 8.5 N.
• The sample time is 0.1 seconds.
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• The observations from the environment are the rocket position x, y , orientation θ , velocity ẋ, ẏ ,
angular velocity θ̇ , and a sensor reading that detects rough landing (-1), soft landing (1) or
airborne (0) condition. The observations are normalized between -1 and 1.

• At the beginning of every episode, the rocket starts from a random initial x position and
orientation. The altitude is always reset to 100 meters.

• The reward rt provided at the time step t is as follows.

rt = st − st − 1 − 0 . 1θt
2− 0 . 01 Lt

2 + Rt
2 + 500c

st = 1− dt +
vt
2

c = yt ≤ 0 && ẏt ≥ − 0 . 5 && ẋt ≤ 0 . 5

Here:

• xt,yt,ẋt, and ẏt are the positions and velocities of the rocket along the x and y axes.

• dt = xt
2 + yt

2/dmax is the normalized distance of the rocket from the goal position.

• vt = xṫ
2 + yṫ

2/vmax is the normalized speed of the rocket.

• dmax and vmax are the maximum distances and speeds.

• θt is the orientation with respect to the vertical axis.

• Lt and Rt are the action values for the left and right thrusters.

• c is a sparse reward for soft-landing with horizontal and vertical velocities less than 0.5 m/s.

Create MATLAB Environment

Create a MATLAB environment for the rocket lander using the RocketLander class.

env = RocketLander;

Obtain the observation and action specifications from the environment.

actionInfo = getActionInfo(env);
observationInfo = getObservationInfo(env);
numObs = observationInfo.Dimension(1);
numAct = numel(actionInfo.Elements);

Set a sample time for the environment

Ts = 0.1;

Fix the random generator seed for reproducibility.

rng(0)

Create PPO Agent

The PPO agent in this example operates on a discrete action space. At every time step, the agent
selects one of the following discrete action pairs.
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L, L− do nothing
L, M − fire right med
L, H − fire right high
M, L− fire left med
M, M − fire left med + right med
M, H − fire left med + right high
H, L− fire left high
H, M − fire left high + right med
H, H − fire left high + right high

Here, L = 0 . 0, M = 0 . 5 and H = 1 . 0 are normalized thrust values for each thruster.

To estimate the policy and value function, the agent maintains function approximators for the actor
and critic, which are modeled using deep neural networks. The training can be sensitive to the initial
network weights and biases, and results can vary with different sets of values. The network weights
are randomly initialized to small values in this example.

Create the critic deep neural network with six inputs and one output. The output of the critic network
is the discounted long-term reward for the input observations.

criticLayerSizes = [400 300];
actorLayerSizes = [400 300];

criticNetwork = [
        featureInputLayer(numObs,'Normalization','none','Name','observation')
        fullyConnectedLayer(criticLayerSizes(1),'Name','CriticFC1', ...
            'Weights',sqrt(2/numObs)*(rand(criticLayerSizes(1),numObs)-0.5), ...
            'Bias',1e-3*ones(criticLayerSizes(1),1))
        reluLayer('Name','CriticRelu1')
        fullyConnectedLayer(criticLayerSizes(2),'Name','CriticFC2', ...
            'Weights',sqrt(2/criticLayerSizes(1))*(rand(criticLayerSizes(2),criticLayerSizes(1))-0.5), ...
            'Bias',1e-3*ones(criticLayerSizes(2),1))
        reluLayer('Name','CriticRelu2')
        fullyConnectedLayer(1,'Name','CriticOutput', ...
            'Weights',sqrt(2/criticLayerSizes(2))*(rand(1,criticLayerSizes(2))-0.5), ...
            'Bias',1e-3)];
criticNetwork = dlnetwork(criticNetwork);

Create the critic value function.

criticOpts = rlOptimizerOptions('LearnRate',1e-4);
critic = rlValueFunction(criticNetwork,observationInfo);

Create the actor using a deep neural network with six inputs and two outputs. The outputs of the
actor network are the probabilities of taking each possible action pair. Each action pair contains
normalized action values for each thruster. The environment step function scales these values to
determine the actual thrust values.

actorNetwork = [featureInputLayer(numObs,'Normalization','none','Name','observation')
        fullyConnectedLayer(actorLayerSizes(1),'Name','ActorFC1', ...
            'Weights',sqrt(2/numObs)*(rand(actorLayerSizes(1),numObs)-0.5), ...
            'Bias',1e-3*ones(actorLayerSizes(1),1))
        reluLayer('Name','ActorRelu1')
        fullyConnectedLayer(actorLayerSizes(2),'Name','ActorFC2', ...
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            'Weights',sqrt(2/actorLayerSizes(1))*(rand(actorLayerSizes(2),actorLayerSizes(1))-0.5), ...
            'Bias',1e-3*ones(actorLayerSizes(2),1))
        reluLayer('Name', 'ActorRelu2')
        fullyConnectedLayer(numAct,'Name','Action', ...
            'Weights',sqrt(2/actorLayerSizes(2))*(rand(numAct,actorLayerSizes(2))-0.5), ...
            'Bias',1e-3*ones(numAct,1))
        softmaxLayer('Name','actionProb')];
actorNetwork = dlnetwork(actorNetwork);

Create the actor using a discrete categorical actor.

actorOpts = rlOptimizerOptions('LearnRate',1e-4);
actor = rlDiscreteCategoricalActor(actorNetwork,observationInfo,actionInfo);

Specify the agent hyperparameters using an rlPPOAgentOptions object.

agentOpts = rlPPOAgentOptions(...
                'ExperienceHorizon',600,... 
                'ClipFactor',0.02,...
                'EntropyLossWeight',0.01,...
                'ActorOptimizerOptions',actorOpts,...
                'CriticOptimizerOptions',criticOpts,...
                'NumEpoch',3,...
                'AdvantageEstimateMethod','gae',...
                'GAEFactor',0.95,...
                'SampleTime',Ts,...
                'DiscountFactor',0.997);

For these hyperparameters:

• The agent collects experiences until it reaches the experience horizon of 600 steps or episode
termination and then trains from mini-batches of 128 experiences for 3 epochs.

• For improving training stability, use an objective function clip factor of 0.02.
• A discount factor value of 0.997 encourages long term rewards.
• Variance in critic output is reduced by using the Generalized Advantage Estimate method with a

GAE factor of 0.95.
• The EntropyLossWeight term of 0.01 enhances exploration during training.

Create the PPO agent.

agent = rlPPOAgent(actor,critic,agentOpts);

Train Agent

To train the PPO agent, specify the following training options.

• Run the training for at most 20000 episodes, with each episode lasting at most 600 time steps.
• Stop the training when the average reward over 100 consecutive episodes is 430 or more.
• Save a copy of the agent for each episode where the episode reward is 700 or more.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',20000,...
    'MaxStepsPerEpisode',600,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',430,...
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    'ScoreAveragingWindowLength',100,...
    'SaveAgentCriteria',"EpisodeReward",...
    'SaveAgentValue',700);

Train the agent using the train function. Due to the complexity of the environment, training process
is computationally intensive and takes several hours to complete. To save time while running this
example, load a pretrained agent by setting doTraining to false.

doTraining = false;
if doTraining   
    trainingStats = train(agent,env,trainOpts);
else
    load('rocketLanderAgent.mat');
end

An example training session is shown below. The actual results may vary because of randomness in
the training process.

Simulate

Plot the rocket lander environment to visualize the simulation.

plot(env)

Simulate the trained agent within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

 Train PPO Agent to Land Rocket

5-131



simOptions = rlSimulationOptions('MaxSteps',600);
simOptions.NumSimulations = 5;  % simulate the environment 5 times
experience = sim(env,agent,simOptions);

See Also
train | rlPPOAgent

More About
• “Train Reinforcement Learning Agents” on page 5-3
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Train Multiple Agents to Perform Collaborative Task
This example shows how to set up a multi-agent training session on a Simulink® environment. In the
example, you train two agents to collaboratively perform the task of moving an object.

The environment in this example is a frictionless two dimensional surface containing elements
represented by circles. A target object C is represented by the blue circle with a radius of 2 m, and
robots A (red) and B (green) are represented by smaller circles with radii of 1 m each. The robots
attempt to move object C outside a circular ring of a radius 8 m by applying forces through collision.
All elements within the environment have mass and obey Newton's laws of motion. In addition,
contact forces between the elements and the environment boundaries are modeled as spring and
mass damper systems. The elements can move on the surface through the application of externally
applied forces in the X and Y directions. There is no motion in the third dimension and the total
energy of the system is conserved.

Set the random seed and create the set of parameters required for this example.

rng(10)
rlCollaborativeTaskParams

Open the Simulink model.

mdl = "rlCollaborativeTask";
open_system(mdl)
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For this environment:

• The 2-dimensional space is bounded from –12 m to 12 m in both the X and Y directions.
• The contact spring stiffness and damping values are 100 N/m and 0.1 N/m/s, respectively.
• The agents share the same observations for positions, velocities of A, B, and C and the action

values from the last time step.
• The simulation terminates when object C moves outside the circular ring.
• At each time step, the agents receive the following reward:
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rA = rglobal + rlocal, A
rB = rglobal + rlocal, B
rglobal = 0 . 001dc

rlocal, A = − 0 . 005dAC− 0 . 008uA
2

rlocal, B = − 0 . 005dBC− 0 . 008uB
2

Here:

• rAand rB are the rewards received by agents A and B, respectively.
• rglobal is a team reward that is received by both agents as object C moves closer towards the

boundary of the ring.
• rlocal, A and rlocal, B are local penalties received by agents A and B based on their distances from

object C and the magnitude of the action from the last time step.
• dC is the distance of object C from the center of the ring.
• dAC and dBC are the distances between agent A and object C and agent B and object C,

respectively.
• The agents apply external forces on the robots that result in motion. uA and uB are the action

values of the two agents A and B from the last time step. The range of action values is between -1
and 1.

Environment

To create a multi-agent environment, specify the block paths of the agents using a string array. Also,
specify the observation and action specification objects using cell arrays. The order of the
specification objects in the cell array must match the order specified in the block path array. When
agents are available in the MATLAB workspace at the time of environment creation, the observation
and action specification arrays are optional. For more information on creating multi-agent
environments, see rlSimulinkEnv.

Create the I/O specifications for the environment. In this example, the agents are homogeneous and
have the same I/O specifications.

% Number of observations
numObs = 16;

% Number of actions
numAct = 2;

% Maximum value of externally applied force (N)
maxF = 1.0;

% I/O specifications for each agent
oinfo = rlNumericSpec([numObs,1]);
ainfo = rlNumericSpec([numAct,1], "UpperLimit", maxF, "LowerLimit", -maxF);
oinfo.Name = "observations";
ainfo.Name = "forces";

Create the Simulink environment interface.

blks = ["rlCollaborativeTask/Agent A", "rlCollaborativeTask/Agent B"];
obsInfos = {oinfo,oinfo};
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actInfos = {ainfo,ainfo};
env = rlSimulinkEnv(mdl,blks,obsInfos,actInfos);

Specify a reset function for the environment. The reset function resetRobots ensures that the
robots start from random initial positions at the beginning of each episode.

env.ResetFcn = @(in) resetRobots(in,RA,RB,RC,boundaryR);

Agents

This example uses two Proximal Policy Optimization (PPO) agents with continuous action spaces. The
agents apply external forces on the robots that result in motion. To learn more about PPO agents, see
“Proximal Policy Optimization Agents” on page 3-42.

The agents collect experiences until the experience horizon (600 steps) is reached. After trajectory
completion, the agents learn from mini-batches of 300 experiences. An objective function clip factor
of 0.2 is used to improve training stability and a discount factor of 0.99 is used to encourage long-
term rewards.

Specify the agent options for this example.

agentOptions = rlPPOAgentOptions(...
    "ExperienceHorizon",600,...
    "ClipFactor",0.2,...
    "EntropyLossWeight",0.01,...
    "MiniBatchSize",300,...
    "NumEpoch",4,...
    "AdvantageEstimateMethod","gae",...
    "GAEFactor",0.95,...
    "SampleTime",Ts,...
    "DiscountFactor",0.99);
agentOptions.ActorOptimizerOptions.LearnRate  = 1e-4;
agentOptions.CriticOptimizerOptions.LearnRate = 1e-4;

Create the agents using the default agent creation syntax. For more information see rlPPOAgent.

agentA = rlPPOAgent(oinfo, ainfo, rlAgentInitializationOptions("NumHiddenUnit", 200), agentOptions);
agentB = rlPPOAgent(oinfo, ainfo, rlAgentInitializationOptions("NumHiddenUnit", 200), agentOptions);

Training

To train multiple agents, you can pass an array of agents to the train function. The order of agents
in the array must match the order of agent block paths specified during environment creation. Doing
so ensures that the agent objects are linked to their appropriate I/O interfaces in the environment.

You can train multiple agents in a decentralized or centralized manner. In decentralized training,
agents collect their own set of experiences during the episodes and learn independently from those
experiences. In centralized training, the agents share the collected experiences and learn from them
together. The actor and critic functions are synchronized between the agents after trajectory
completion.

To configure a multi-agent training, you can create agent groups and specify a learning strategy for
each group through the rlMultiAgentTrainingOptions object. Each agent group may contain
unique agent indices, and the learning strategy can be "centralized" or "decentralized". For
example, you can use the following command to configure training for three agent groups with
different learning strategies. The agents with indices [1,2] and [3,4] learn in a centralized manner
while agent 4 learns in a decentralized manner.
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opts = rlMultiAgentTrainingOptions("AgentGroups", {[1,2], 4, [3,5]},
"LearningStrategy", ["centralized","decentralized","centralized"])

For more information on multi-agent training, type help rlMultiAgentTrainingOptions in
MATLAB.

You can perform decentralized or centralized training by running one of the following sections using
the Run Section button.

1. Decentralized Training

To configure decentralized multi-agent training for this example:

• Automatically assign agent groups using the AgentGroups=auto option. This allocates each
agent in a separate group.

• Specify the "decentralized" learning strategy.
• Run the training for at most 1000 episodes, with each episode lasting at most 600 time steps.
• Stop the training of an agent when its average reward over 30 consecutive episodes is –10 or

more.

trainOpts = rlMultiAgentTrainingOptions(...
    "AgentGroups","auto",...
    "LearningStrategy","decentralized",...
    "MaxEpisodes",1000,...
    "MaxStepsPerEpisode",600,...
    "ScoreAveragingWindowLength",30,...
    "StopTrainingCriteria","AverageReward",...
    "StopTrainingValue",-10);

Train the agents using the train function. Training can take several hours to complete depending on
the available computational power. To save time, load the MAT file decentralizedAgents.mat
which contains a set of pretrained agents. To train the agents yourself, set doTraining to true.

doTraining = false;
if doTraining
    decentralizedTrainResults = train([agentA,agentB],env,trainOpts);
else
    load("decentralizedAgents.mat");
end

The following figure shows a snapshot of decentralized training progress. You can expect different
results due to randomness in the training process.
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2. Centralized Training

To configure centralized multi-agent training for this example:

• Allocate both agents (with indices 1 and 2) in a single group. You can do this by specifying the
agent indices in the "AgentGroups" option.

• Specify the "centralized" learning strategy.
• Run the training for at most 1000 episodes, with each episode lasting at most 600 time steps.
• Stop the training of an agent when its average reward over 30 consecutive episodes is –10 or

more.

trainOpts = rlMultiAgentTrainingOptions(...
    "AgentGroups",{[1,2]},...
    "LearningStrategy","centralized",...
    "MaxEpisodes",1000,...
    "MaxStepsPerEpisode",600,...
    "ScoreAveragingWindowLength",30,...
    "StopTrainingCriteria","AverageReward",...
    "StopTrainingValue",-10);

Train the agents using the train function. Training can take several hours to complete depending on
the available computational power. To save time, load the MAT file centralizedAgents.mat which
contains a set of pretrained agents. To train the agents yourself, set doTraining to true.
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doTraining = false;
if doTraining
    centralizedTrainResults = train([agentA,agentB],env,trainOpts);
else
    load("centralizedAgents.mat");
end

The following figure shows a snapshot of centralized training progress. You can expect different
results due to randomness in the training process.

Simulation

Once the training is finished, simulate the trained agents with the environment.

simOptions = rlSimulationOptions("MaxSteps",300);
exp = sim(env,[agentA agentB],simOptions);
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For more information on agent simulation, see rlSimulationOptions and sim.

See Also
train | rlSimulinkEnv

More About
• “Train Reinforcement Learning Agents” on page 5-3

5 Train and Validate Agents

5-140



Train Multiple Agents for Area Coverage
This example demonstrates a multi-agent collaborative-competitive task in which you train three
proximal policy optimization (PPO) agents to explore all areas within a grid-world environment.

Multi-agent training is supported for Simulink® environments only. As shown in this example, if you
define your environment behavior using a MATLAB® System object, you can incorporate it into a
Simulink environment using a MATLAB System (Simulink) block.

Create Environment

The environment in this example is a 12x12 grid world containing obstacles, with unexplored cells
marked in white and obstacles marked in black. There are three robots in the environment
represented by the red, green, and blue circles. Three proximal policy optimization agents with
discrete action spaces control the robots. To learn more about PPO agents, see “Proximal Policy
Optimization Agents” on page 3-42.

The agents provide one of five possible movement actions (WAIT, UP, DOWN, LEFT, or RIGHT) to their
respective robots. The robots decide whether an action is legal or illegal. For example, an action of
moving LEFT when the robot is located next to the left boundary of the environment is deemed
illegal. Similarly, actions for colliding against obstacles and other agents in the environment are
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illegal actions and draw penalties. The environment dynamics are deterministic, which means the
robots execute legal and illegal actions with 100% and 0% probabilities, respectively. The overall goal
is to explore all cells as quickly as possible.

At each time step, an agent observes the state of the environment through a set of four images that
identify the cells with obstacles, current position of the robot that is being controlled, position of
other robots, and cells that have been explored during the episode. These images are combined to
create a 4-channel 12x12 image observation set. The following figure shows an example of what the
agent controlling the green robot observes for a given time step.

For the grid world environment:

• The search area is a 12x12 grid with obstacles.
• The observation for each agent is a 12x12x4 image.
• The discrete action set is a set of five actions (WAIT=0, UP=1, DOWN=2, LEFT=3, RIGHT=4).
• The simulation terminates when the grid is fully explored or the maximum number of steps is

reached.

At each time step, agents receive the following rewards and penalties.

• +1 for moving to a previously unexplored cell (white).
• -0.5 for an illegal action (attempt to move outside the boundary or collide against other robots and

obstacles)
• -0.05 for an action that results in movement (movement cost).
• -0.1 for an action that results in no motion (lazy penalty).
• If the grid is fully explored, +200 times the coverage contribution for that robot during the

episode (ratio of cells explored to total cells)

Define the locations of obstacles within the grid using a matrix of indices. The first column contains
the row indices, and the second column contains the column indices.

obsMat = [4 3; 5 3; 6 3; 7 3; 8 3; 9 3; 5 11; 6 11; 7 11; 8 11; 5 12; 6 12; 7 12; 8 12];

Initialize the robot positions.

sA0 = [2 2];
sB0 = [11 4];
sC0 = [3 12];
s0 = [sA0; sB0; sC0];

Specify the sample time, simulation time, and maximum number of steps per episode.
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Ts = 0.1;
Tf = 100;
maxsteps = ceil(Tf/Ts);

Open the Simulink model.

mdl = "rlAreaCoverage";
open_system(mdl)

The GridWorld block is a MATLAB System block representing the training environment. The System
object for this environment is defined in GridWorld.m.

In this example, the agents are homogeneous and have the same observation and action
specifications. Create the observation and action specifications for the environment. For more
information, see rlNumericSpec and rlFiniteSetSpec.

% Define observation specifications.
obsSize = [12 12 4];
oinfo = rlNumericSpec(obsSize);
oinfo.Name = 'observations';

% Define action specifications.
numAct = 5;
actionSpace = {0,1,2,3,4};
ainfo = rlFiniteSetSpec(actionSpace);
ainfo.Name = 'actions';

Specify the block paths for the agents.

blks = mdl + ["/Agent A (Red)","/Agent B (Green)","/Agent C (Blue)"];

Create the environment interface, specifying the same observation and action specifications for all
three agents.
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env = rlSimulinkEnv(mdl,blks,{oinfo,oinfo,oinfo},{ainfo,ainfo,ainfo});

Specify a reset function for the environment. The reset function resetMap ensures that the robots
start from random initial positions at the beginning of each episode. The random initialization makes
the agents robust to different starting positions and improves training convergence.

env.ResetFcn = @(in) resetMap(in, obsMat);

Create Agents

The PPO agents in this example operate on a discrete action space and rely on actor and critic
functions to learn the optimal policies. The agents maintain deep neural network-based function
approximators for the actors and critics with similar network structures (a combination of
convolution and fully connected layers). The critic outputs a scalar value representing the state value
V s . The actor outputs the probabilities π a s  of taking each of the five actions WAIT, UP, DOWN,
LEFT, or RIGHT.

Set the random seed for reproducibility.

rng(0)

Create the actor and critic functions using the following steps.

1 Create the actor and critic deep neural networks.
2 Create the actor function objects using the rlDiscreteCategoricalActor command.
3 Create the critic function objects using the rlValueFunction command.

Use the same network structure and representation options for all three agents.

for idx = 1:3
    % Create actor deep neural network.
    actorNetWork = [
        imageInputLayer(obsSize,'Normalization','none','Name','observations')
        convolution2dLayer(8,16,'Name','conv1','Stride',1,'Padding',1,'WeightsInitializer','he')
        reluLayer('Name','relu1')
        convolution2dLayer(4,8,'Name','conv2','Stride',1,'Padding','same','WeightsInitializer','he')
        reluLayer('Name','relu2')
        fullyConnectedLayer(256,'Name','fc1','WeightsInitializer','he')
        reluLayer('Name','relu3')
        fullyConnectedLayer(128,'Name','fc2','WeightsInitializer','he')
        reluLayer('Name','relu4')
        fullyConnectedLayer(64,'Name','fc3','WeightsInitializer','he')
        reluLayer('Name','relu5')
        fullyConnectedLayer(numAct,'Name','output')
        softmaxLayer('Name','action')];
    actorNetWork = dlnetwork(actorNetWork);
    
    % Create critic deep neural network.
    criticNetwork = [
        imageInputLayer(obsSize,'Normalization','none','Name','observations')
        convolution2dLayer(8,16,'Name','conv1','Stride',1,'Padding',1,'WeightsInitializer','he')
        reluLayer('Name','relu1')
        convolution2dLayer(4,8,'Name','conv2','Stride',1,'Padding','same','WeightsInitializer','he')
        reluLayer('Name','relu2')
        fullyConnectedLayer(256,'Name','fc1','WeightsInitializer','he')
        reluLayer('Name','relu3')
        fullyConnectedLayer(128,'Name','fc2','WeightsInitializer','he')
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        reluLayer('Name','relu4')
        fullyConnectedLayer(64,'Name','fc3','WeightsInitializer','he')
        reluLayer('Name','relu5')
        fullyConnectedLayer(1,'Name','output')];
    criticNetwork = dlnetwork(criticNetwork);
    
    % create actor and critic
    actor(idx) = rlDiscreteCategoricalActor(actorNetWork,oinfo,ainfo); %#ok<*SAGROW> 
    critic(idx) = rlValueFunction(criticNetwork,oinfo);
end

Specify optimizer options for the actor and critic.

actorOpts = rlOptimizerOptions('LearnRate',1e-4,'GradientThreshold',1);
criticOpts = rlOptimizerOptions('LearnRate',1e-4,'GradientThreshold',1);

Specify the agent options using rlPPOAgentOptions. Use the same options for all three agents.
During training, agents collect experiences until they reach the experience horizon of 128 steps and
then train from mini-batches of 64 experiences. An objective function clip factor of 0.2 improves
training stability, and a discount factor value of 0.995 encourages long-term rewards.

opt = rlPPOAgentOptions(...
    'ActorOptimizerOptions',actorOpts,...
    'CriticOptimizerOptions',criticOpts,...
    'ExperienceHorizon',128,...
    'ClipFactor',0.2,...
    'EntropyLossWeight',0.01,...
    'MiniBatchSize',64,...
    'NumEpoch',3,...
    'AdvantageEstimateMethod','gae',...
    'GAEFactor',0.95,...
    'SampleTime',Ts,...
    'DiscountFactor',0.995);

Create the agents using the defined actors, critics, and options.

agentA = rlPPOAgent(actor(1),critic(1),opt);
agentB = rlPPOAgent(actor(2),critic(2),opt);
agentC = rlPPOAgent(actor(3),critic(3),opt);

Train Agents

In this example, the agents are trained independently in decentralized manner. Specify the following
options for training the agents.

• Automatically assign agent groups using the AgentGroups=auto option. This allocates each
agent in a separate group.

• Specify the "decentralized" learning strategy.
• Run the training for at most 1000 episodes, with each episode lasting at most 5000 time steps.
• Stop the training of an agent when its average reward over 100 consecutive episodes is 80 or

more.

trainOpts = rlMultiAgentTrainingOptions(...
    "AgentGroups","auto",...
    "LearningStrategy","decentralized",...
    'MaxEpisodes',1000,...
    'MaxStepsPerEpisode',maxsteps,...

 Train Multiple Agents for Area Coverage

5-145



    'Plots','training-progress',...
    'ScoreAveragingWindowLength',100,...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',80); 

For more information on multi-agent training, type help rlMultiAgentTrainingOptions in
MATLAB.

To train the agents, specify an array of agents to the train function. The order of the agents in the
array must match the order of agent block paths specified during environment creation. Doing so
ensures that the agent objects are linked to the appropriate action and observation specifications in
the environment.

Training is a computationally intensive process that takes several minutes to complete. To save time
while running this example, load pretrained agent parameters by setting doTraining to false. To
train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
    result = train([agentA,agentB,agentC],env,trainOpts);
else
    load('rlAreaCoverageAgents.mat');
end

The following figure shows a snapshot of the training progress. You can expect different results due
to randomness in the training process.
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Simulate Agents

Simulate the trained agents within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

rng(0) % reset the random seed
simOpts = rlSimulationOptions('MaxSteps',maxsteps);
experience = sim(env,[agentA,agentB,agentC],simOpts);
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The agents successfully cover the entire grid world.

See Also
train | rlSimulinkEnv

More About
• “Train Reinforcement Learning Agents” on page 5-3
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Train Multiple Agents for Path Following Control
This example shows how to train multiple agents to collaboratively perform path-following control
(PFC) for a vehicle. The goal of PFC is to make the ego vehicle travel at a set velocity while
maintaining a safe distance from a lead car by controlling longitudinal acceleration and braking, and
also while keeping the vehicle travelling along the centerline of its lane by controlling the front
steering angle. For more information on PFC, see Path Following Control System (Model Predictive
Control Toolbox).

Overview

An example that trains a reinforcement learning agent to perform PFC is shown in “Train DDPG
Agent for Path-Following Control” on page 5-184. In that example, a single deep deterministic policy
gradient (DDPG) agent is trained to control both the longitudinal speed and lateral steering of the
ego vehicle. In this example, you train two reinforcement learning agents — A DDPG agent provides
continuous acceleration values for the longitudinal control loop and a deep Q-network (DQN) agent
provides discrete steering angle values for the lateral control loop.

The trained agents perform PFC through cooperative behavior and achieve satisfactory results.

Create Environment

The environment for this example includes a simple bicycle model for the ego car and a simple
longitudinal model for the lead car. The training goal is to make the ego car travel at a set velocity
while maintaining a safe distance from lead car by controlling longitudinal acceleration and braking,
while also keeping the ego car travelling along the centerline of its lane by controlling the front
steering angle.

Load the environment parameters.

multiAgentPFCParams

Open the Simulink model.

mdl = "rlMultiAgentPFC";
open_system(mdl)
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In this model, the two reinforcement learning agents (RL Agent1 and RL Agent2) provide longitudinal
acceleration and steering angle signals, respectively.

The simulation terminates when any of the following conditions occur.

• |e1 | > 1 (magnitude of the lateral deviation exceeds 1)
• Vego < 0 . 5 (longitudinal velocity of the ego car drops below 0.5.
• Drel < 0 (distance between the ego and lead car is below zero)

For the longitudinal controller (RL Agent1):

• The reference velocity for the ego car Vref  is defined as follows. If the relative distance is less than
the safe distance, the ego car tracks the minimum of the lead car velocity and driver-set velocity.
In this manner, the ego car maintains some distance from the lead car. If the relative distance is
greater than the safe distance, the ego car tracks the driver-set velocity. In this example, the safe
distance is defined as a linear function of the ego car longitudinal velocity V, that is,
tgap * V + Ddefault. The safe distance determines the tracking velocity for the ego car.

• The observations from the environment contain the longitudinal measurements: the velocity error
eV = Vref − V, its integral ∫e, and the ego car longitudinal velocity V.

• The action signal consists of continuous acceleration values between -3 and 2 m/s^2.
• The reward rt, provided at every time step t, is

rt = − (10eV
2 + 100at − 1

2 ) × 0 . 001− 10Ft + Mt

Here, at − 1 is the acceleration input from the previous time step, and:

• Ft = 1 if the simulation is terminated, otherwise Ft = 0.
• Mt = 1 if eV

2 < 1, otherwise Mt = 0.
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For the lateral controller (RL Agent2):

• The observations from the environment contain the lateral measurements: the lateral deviation e1,
relative yaw angle e2, their derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The action signal consists of discrete steering angle actions which take values from -15 degrees
(-0.2618 rad) to 15 degrees (0.2618 rad) in steps of 1 degree (0.0175 rad).

• The reward rt, provided at every time step t, is

rt = − (100e1
2 + 500ut − 1

2 ) × 0 . 001− 10Ft + 2Ht

Here, ut − 1 is the steering input from the previous time step, at − 1 is the acceleration input from the
previous time step, and:

• Ft = 1if the simulation is terminated, otherwise Ft = 0.
• Ht = 1 e1

2 < 0 . 01, otherwise Ht = 0.

The logical terms in the reward functions (Ft, Mt, and Ht) penalize the agents if the simulation
terminates early, while encouraging the agents to make both the lateral error and velocity error
small.

Create the observation and action specifications for longitudinal control loop.

obsInfo1 = rlNumericSpec([3 1]);
actInfo1 = rlNumericSpec([1 1],'LowerLimit',-3,'UpperLimit',2);

Create the observation and action specifications for lateral control loop.

obsInfo2 = rlNumericSpec([6 1]);
actInfo2 = rlFiniteSetSpec((-15:15)*pi/180);

Combine the observation and action specifications as a cell array.

obsInfo = {obsInfo1,obsInfo2};
actInfo = {actInfo1,actInfo2};

Create a Simulink environment interface, specifying the block paths for both agent blocks. The order
of the block paths must match the order of the observation and action specification cell arrays.

blks = mdl + ["/RL Agent1", "/RL Agent2"];
env = rlSimulinkEnv(mdl,blks,obsInfo,actInfo);

Specify a reset function for the environment using the ResetFcn property. The function
pfcResetFcn randomly sets the initial poses of the lead and ego vehicles at the beginning of every
episode during training.

env.ResetFcn = @pfcResetFcn;

Create Agents

For this example you create two reinforcement learning agents. First, fix the random seed for
reproducibility.

rng(0)

Both agents operate at the same sample time in this example. Set the sample time value (in seconds).
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Ts = 0.1;

Longitudinal Control

The agent for the longitudinal control loop is a DDPG agent. A DDPG agent approximates the long-
term reward given observations and actions using a critic value function representation and selects
actions using an actor policy representation. For more information on creating deep neural network
value function and policy representations, see “Create Policies and Value Functions” on page 4-2.

Use the createCCAgent function to create a DDPG agent for longitudinal control. The structure of
this agent is similar to the “Train DDPG Agent for Adaptive Cruise Control” on page 5-158 example.

agent1 = createACCAgent(obsInfo1,actInfo1,Ts);

Lateral Control

The agent for the lateral control loop is a DQN agent. A DQN agent approximates the long-term
reward given observations and actions using a critic value function representation.

Use the createLKAAgent function to create a DQN agent for lateral control. The structure of this
agent is similar to the “Train DQN Agent for Lane Keeping Assist” on page 5-166 example.

agent2 = createLKAAgent(obsInfo2,actInfo2,Ts);

Train Agents

Specify the training options. For this example, use the following options.

• Run each training episode for at most 5000 episodes, with each episode lasting at most maxsteps
time steps.

• Display the training progress in the Episode Manager dialog box (set the Verbose and Plots
options).

• Stop training the DDPG and DQN agents when they receive an average reward greater than 480
and 1195, respectively. When one agent reaches its stop criteria, it simulates its own policy
without learning while the other agent continues training.

Tf = 60; % simulation time
maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',[480,1195]);

Train the agents using the train function. Training these agents is a computationally intensive
process that takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set doTraining to
true.

doTraining = false;
if doTraining    
    % Train the agent.
    trainingStats = train([agent1,agent2],env,trainingOpts);
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else
    % Load pretrained agents for the example.
    load('rlPFCAgents.mat')       
end

The following figure shows a snapshot of the training progress for the two agents.

Simulate Agents

To validate the performance of the trained agents, simulate the agents within the Simulink
environment by uncommenting the following commands. For more information on agent simulation,
see rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,[agent1, agent2],simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.

e1_initial = -0.4;
e2_initial = 0.1;
x0_lead = 80;
sim(mdl)

The following plots show the results when the lead car is 70 m ahead of the ego car at the beginning
of simulation.
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• The lead car changes speed from 24 m/s to 30 m/s periodically (top-right plot). The ego car
maintains a safe distance throughout the simulation (bottom-right plot).

• From 0 to 30 seconds, the ego car tracks the set velocity (top-right plot) and experiences some
acceleration (top-left plot). After that, the acceleration is reduced to 0.

• The bottom-left plot shows the lateral deviation. As shown in the plot, the lateral deviation is
greatly decreased within 1 second. The lateral deviation remains less than 0.1 m.
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See Also
train | rlSimulinkEnv
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More About
• “Train Reinforcement Learning Agents” on page 5-3
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Train DDPG Agent for Adaptive Cruise Control
This example shows how to train a deep deterministic policy gradient (DDPG) agent for adaptive
cruise control (ACC) in Simulink®. For more information on DDPG agents, see “Deep Deterministic
Policy Gradient Agents” on page 3-29.

Simulink Model

The reinforcement learning environment for this example is the simple longitudinal dynamics for an
ego car and lead car. The training goal is to make the ego car travel at a set velocity while
maintaining a safe distance from lead car by controlling longitudinal acceleration and braking. This
example uses the same vehicle model as the “Adaptive Cruise Control System Using Model Predictive
Control” (Model Predictive Control Toolbox) example.

Specify the initial position and velocity for the two vehicles.

x0_lead = 50;   % initial position for lead car (m)
v0_lead = 25;   % initial velocity for lead car (m/s)
x0_ego = 10;    % initial position for ego car (m)
v0_ego = 20;    % initial velocity for ego car (m/s)

Specify standstill default spacing (m), time gap (s) and driver-set velocity (m/s).

D_default = 10;
t_gap = 1.4;
v_set = 30;

To simulate the physical limitations of the vehicle dynamics, constraint the acceleration to the range
[–3,2] m/s^2.

amin_ego = -3;
amax_ego = 2;

Define the sample time Ts and simulation duration Tf in seconds.

Ts = 0.1;
Tf = 60;

Open the model.

mdl = 'rlACCMdl';
open_system(mdl)
agentblk = [mdl '/RL Agent'];
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For this model:

• The acceleration action signal from the agent to the environment is from –3 to 2 m/s^2.
• The reference velocity for the ego car Vref  is defined as follows. If the relative distance is less than

the safe distance, the ego car tracks the minimum of the lead car velocity and driver-set velocity.
In this manner, the ego car maintains some distance from the lead car. If the relative distance is
greater than the safe distance, the ego car tracks the driver-set velocity. In this example, the safe
distance is defined as a linear function of the ego car longitudinal velocity V; that is,
tgap * V + Ddefault. The safe distance determines the reference tracking velocity for the ego car.

• The observations from the environment are the velocity error e = Vref − Vego, its integral ∫e, and
the ego car longitudinal velocity V.

• The simulation is terminated when longitudinal velocity of the ego car is less than 0, or the
relative distance between the lead car and ego car becomes less than 0.

• The reward rt, provided at every time step t, is

rt = − (0 . 1et
2 + ut − 1

2 ) + Mt

where ut − 1 is the control input from the previous time step. The logical value Mt = 1 if velocity error
et

2 < = 0 . 25; otherwise, Mt = 0.

Create Environment Interface

Create a reinforcement learning environment interface for the model.

Create the observation specification.

observationInfo = rlNumericSpec([3 1],'LowerLimit',-inf*ones(3,1),'UpperLimit',inf*ones(3,1));
observationInfo.Name = 'observations';
observationInfo.Description = 'information on velocity error and ego velocity';

Create the action specification.
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actionInfo = rlNumericSpec([1 1],'LowerLimit',-3,'UpperLimit',2);
actionInfo.Name = 'acceleration';

Create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

To define the initial condition for the position of the lead car, specify an environment reset function
using an anonymous function handle. The reset function localResetFcn, which is defined at the end
of the example, randomizes the initial position of the lead car.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng('default')

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a critic value
function representation. To create the critic, first create a deep neural network with two inputs, the
state and action, and one output. For more information on creating a neural network value function
representation, see “Create Policies and Value Functions” on page 4-2.

L = 48; % number of neurons
statePath = [
    featureInputLayer(3,'Normalization','none','Name','observation')
    fullyConnectedLayer(L,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(L,'Name','fc2')
    additionLayer(2,'Name','add')
    reluLayer('Name','relu2')
    fullyConnectedLayer(L,'Name','fc3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(1,'Name','fc4')];

actionPath = [
    featureInputLayer(1,'Normalization','none','Name','action')
    fullyConnectedLayer(L, 'Name', 'fc5')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
    
criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');
criticNetwork = dlnetwork(criticNetwork);

View the critic network configuration.

plot(layerGraph(criticNetwork))
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Specify options for the critic optimizer using rlOptimizerOptions.

criticOptions = rlOptimizerOptions('LearnRate',1e-3,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

Create the critic representation using the specified neural network and options. You must also specify
the action and observation info for the critic, which you obtain from the environment interface. For
more information, see rlQValueFunction.

critic = rlQValueFunction(criticNetwork,observationInfo,actionInfo,...
    'ObservationInputNames','observation','ActionInputNames','action');

A DDPG agent decides which action to take given observations by using an actor representation. To
create the actor, first create a deep neural network with one input, the observation, and one output,
the action.

Construct the actor similarly to the critic. For more information, see
rlContinuousDeterministicActor.

actorNetwork = [
    featureInputLayer(3,'Normalization','none','Name','observation')
    fullyConnectedLayer(L,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(L,'Name','fc2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(L,'Name','fc3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(1,'Name','fc4')
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    tanhLayer('Name','tanh1')
    scalingLayer('Name','ActorScaling1','Scale',2.5,'Bias',-0.5)];
actorNetwork = dlnetwork(actorNetwork);

actorOptions = rlOptimizerOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-4);
actor = rlContinuousDeterministicActor(actorNetwork,observationInfo,actionInfo);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
    'SampleTime',Ts,...
    'ActorOptimizerOptions',actorOptions,...
    'CriticOptimizerOptions',criticOptions,...
    'ExperienceBufferLength',1e6);
agentOptions.NoiseOptions.Variance = 0.6;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training episode for at most 5000 episodes, with each episode lasting at most 600 time
steps.

• Display the training progress in the Episode Manager dialog box.
• Stop training when the agent receives an episode reward greater than 260.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','EpisodeReward',...
    'StopTrainingValue',260);

Train the agent using the train function. Training is a computationally intensive process that takes
several minutes to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOpts);
else
    % Load a pretrained agent for the example.
    load('SimulinkACCDDPG.mat','agent')       
end
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Simulate DDPG Agent

To validate the performance of the trained agent, simulate the agent within the Simulink environment
by uncommenting the following commands. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.

x0_lead = 80;
sim(mdl)

The following plots show the simulation results when lead car is 70 (m) ahead of the ego car.

• In the first 28 seconds, the relative distance is greater than the safe distance (bottom plot), so the
ego car tracks set velocity (middle plot). To speed up and reach the set velocity, acceleration is
positive (top plot).

• From 28 to 60 seconds, the relative distance is less than the safe distance (bottom plot), so the
ego car tracks the minimum of the lead velocity and set velocity. From 28 to 36 seconds, the lead
velocity is less than the set velocity (middle plot). To slow down and track the lead car velocity,
acceleration is negative (top plot). From 36 to 60 seconds, the ego car adjusts its acceleration to
track the reference velocity closely (middle plot). Within this time interval, the ego car tracks the
set velocity from 43 to 52 seconds and tracks lead velocity from 36 to 43 seconds and 52 to 60
seconds.
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Close the Simulink model.

bdclose(mdl)

Reset Function

function in = localResetFcn(in)
% Reset the initial position of the lead car.
in = setVariable(in,'x0_lead',40+randi(60,1,1));
end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Policies and Value Functions” on page 4-2
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Train DQN Agent for Lane Keeping Assist
This example shows how to train a deep Q-learning network (DQN) agent for lane keeping assist
(LKA) in Simulink®. For more information on DQN agents, see “Deep Q-Network Agents” on page 3-
21.

Simulink Model for Ego Car

The reinforcement learning environment for this example is a simple bicycle model for ego vehicle
dynamics. The training goal is to keep the ego vehicle traveling along the centerline of the lanes by
adjusting the front steering angle. This example uses the same vehicle model as in “Lane Keeping
Assist System Using Model Predictive Control” (Model Predictive Control Toolbox). The ego car
dynamics are specified by the following parameters.

m = 1575;   % total vehicle mass (kg)
Iz = 2875;  % yaw moment of inertia (mNs^2)
lf = 1.2;   % longitudinal distance from center of gravity to front tires (m)
lr = 1.6;   % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
Vx = 15;    % longitudinal velocity (m/s)

Define the sample time Ts and simulation duration T in seconds.

Ts = 0.1;
T = 15;

The output of the LKA system is the front steering angle of the ego car. To simulate the physical
limitations of the ego car, constrain the steering angle to the range [-0.5,0.5] rad.

u_min = -0.5;
u_max = 0.5;

The curvature of the road is defined by a constant 0.001 (m−1). The initial value for the lateral
deviation is 0.2 m and the initial value for the relative yaw angle is –0.1 rad.

rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Open the model.

mdl = 'rlLKAMdl';
open_system(mdl);
agentblk = [mdl '/RL Agent'];
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For this model:

• The steering-angle action signal from the agent to the environment is from –15 degrees to 15
degrees.

• The observations from the environment are the lateral deviation e1, the relative yaw angle e2,
their derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation is terminated when the lateral deviation |e1 | > 1 .

• The reward rt, provided at every time step t, is

rt = − (10e1
2 + 5e2

2 + 2u2 + 5ė1
2 + 5ė2

2)

where u is the control input from the previous time step t − 1.

Create Environment Interface

Create a reinforcement learning environment interface for the ego vehicle. To do so, first create the
observation and action specifications.

observationInfo = rlNumericSpec([6 1],'LowerLimit',-inf*ones(6,1),'UpperLimit',inf*ones(6,1));
observationInfo.Name = 'observations';
observationInfo.Description = 'information on lateral deviation and relative yaw angle';
actionInfo = rlFiniteSetSpec((-15:15)*pi/180);
actionInfo.Name = 'steering';

Then, create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);
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The interface has a discrete action space where the agent can apply one of 31 possible steering
angles from –15 degrees to 15 degrees. The observation is the six-dimensional vector containing
lateral deviation, relative yaw angle, as well as their derivatives and integrals with respect to time.

To define the initial condition for lateral deviation and relative yaw angle, specify an environment
reset function using an anonymous function handle. This reset function randomizes the initial values
for the lateral deviation and relative yaw angle.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DQN agent

A DQN agent approximates the long-term reward, given observations and actions, using a value
function critic representation.

DQN agents can use multi-output Q-value critic approximators, which are generally more efficient. A
multi-output approximator has observations as inputs and state-action values as outputs. Each output
element represents the expected cumulative long-term reward for taking the corresponding discrete
action from the state indicated by the observation inputs.

To create the critic, first create a deep neural network with one input (the six-dimensional observed
state) and one output vector with 31 elements (evenly spaced steering angles from -15 to 15
degrees). For more information on creating a deep neural network value function representation, see
“Create Policies and Value Functions” on page 4-2.

nI = observationInfo.Dimension(1);  % number of inputs (6)
nL = 24;                            % number of neurons
nO = numel(actionInfo.Elements);    % number of outputs (31)

dnn = [
    featureInputLayer(nI,'Normalization','none','Name','state')
    fullyConnectedLayer(nL,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(nL,'Name','fc2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(nO,'Name','fc3')];
dnn = dlnetwork(dnn);

View the network configuration.

figure
plot(layerGraph(dnn))
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Specify options for the critic optimizer using rlOptimizerOptions.

criticOptions = rlOptimizerOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation info for the critic, which you obtain from the environment
interface. For more information, see rlVectorQValueFunction.

critic = rlVectorQValueFunction(dnn,observationInfo,actionInfo);

To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.

agentOptions = rlDQNAgentOptions(...
    'SampleTime',Ts,...
    'UseDoubleDQN',true,...
    'CriticOptimizerOptions',criticOptions,...
    'ExperienceBufferLength',1e6,...
    'MiniBatchSize',64);

Then, create the DQN agent using the specified critic representation and agent options. For more
information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:
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• Run each training episode for at most 5000 episodes, with each episode lasting at most
ceil(T/Ts) time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option to
training-progress) and disable the command line display (set the Verbose option to false).

• Stop training when the episode reward reaches –1.
• Save a copy of the agent for each episode where the cumulative reward is greater than –2.5.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(T/Ts);
trainingOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','EpisodeReward',...
    'StopTrainingValue',-1,...
    'SaveAgentCriteria','EpisodeReward',...
    'SaveAgentValue',-2.5);

Train the agent using the train function. Training is a computationally intensive process that takes
several hours to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOpts);
else
    % Load the pretrained agent for the example.
    load('SimulinkLKADQNMulti.mat','agent')       
end
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Simulate DQN Agent

To validate the performance of the trained agent, uncomment the following two lines and simulate the
agent within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent on deterministic initial conditions, simulate the model in Simulink.

e1_initial = -0.4;
e2_initial = 0.2;
sim(mdl)

As the plots show, the lateral error (top plot) and relative yaw angle (middle plot) are both driven
close to zero. The vehicle starts from off the centerline (–0.4 m) and with a nonzero yaw angle error
(0.2 rad). The lane keeping assist makes the ego car travel along the centerline after about 2.5
seconds. The steering angle (bottom plot) shows that the controller reaches steady state after about 2
seconds.
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Close the Simulink model.

if ~doTraining
    %bdclose(mdl)
end

Reset Function

function in = localResetFcn(in)
    % reset
    in = setVariable(in,'e1_initial', 0.5*(-1+2*rand)); % random value for lateral deviation
    in = setVariable(in,'e2_initial', 0.1*(-1+2*rand)); % random value for relative yaw angle
end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Policies and Value Functions” on page 4-2
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Train PPO Agent for Automatic Parking Valet
This example demonstrates the design of a hybrid controller for an automatic search and parking
task. The hybrid controller uses model predictive control (MPC) to follow a reference path in a
parking lot and a trained reinforcement learning (RL) agent to perform the parking maneuver.

The automatic parking algorithm in this example executes a series of maneuvers while
simultaneously sensing and avoiding obstacles in tight spaces. It switches between an adaptive MPC
controller and an RL agent to complete the parking maneuver. The MPC controller moves the vehicle
at a constant speed along a reference path while an algorithm searches for an empty parking spot.
When a spot is found, the RL Agent takes over and executes a pretrained parking maneuver. Prior
knowledge of the environment (the parking lot) including the locations of the empty spots and parked
vehicles is available to the controllers.

Parking Lot

The parking lot is represented by the ParkingLot class, which stores information about the ego
vehicle, empty parking spots, and static obstacles (parked cars). Each parking spot has a unique
index number and an indicator light that is either green (free) or red (occupied). Parked vehicles are
represented in black.

Create a ParkingLot object with a free spot at location 7.

freeSpotIdx = 7;
map = ParkingLot(freeSpotIdx);

Specify an initial pose X0, Y0, θ0  for the ego vehicle. The target pose is determined based on the first
available free spot as the vehicle navigates the parking lot.
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egoInitialPose = [20, 15, 0];

Compute the target pose for the vehicle using the createTargetPose function. The target pose
corresponds to the location in freeSpotIdx.

egoTargetPose = createTargetPose(map,freeSpotIdx)

egoTargetPose = 1×3

   47.7500    4.9000   -1.5708

Sensor Modules

The parking algorithm uses camera and lidar sensors to gather information from the environment.

Camera

The field of view of a camera mounted on the ego vehicle is represented by the area shaded in green
in the following figure. The camera has a field of view φ bounded by ±60 degrees and a maximum
measurement depth dmax of 10 m.

As the ego vehicle moves forward, the camera module senses the parking spots that fall within the
field of view and determines whether a spot is free or occupied. For simplicity, this action is
implemented using geometrical relationships between the spot locations and the current vehicle
pose. A parking spot is within the camera range if di ≤ dmax and φmin ≤ φi ≤ φmax, where di is the
distance to the parking spot and φi is the angle to the parking spot.
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Lidar

The reinforcement learning agent uses lidar sensor readings to determine the proximity of the ego
vehicle to other vehicles in the environment. The lidar sensor in this example is also modeled using
geometrical relationships. Lidar distances are measured along 12 line segments that radially emerge
from the center of the ego vehicle. When a lidar line intersects an obstacle, it returns the distance of
the obstacle from the vehicle. The maximum measurable lidar distance along any line segment is 6 m.

Auto Parking Valet Model

The parking valet model, including the controllers, ego vehicle, sensors, and parking lot, is
implemented in Simulink®.

Load the auto parking valet parameters.

autoParkingValetParams

Open the Simulink model.

mdl = 'rlAutoParkingValet';
open_system(mdl)
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The ego vehicle dynamics in this model are represented by a single-track bicycle model with two
inputs: vehicle speed v (m/s) and steering angle δ (radians). The MPC and RL controllers are placed
within Enabled Subsystem blocks that are activated by signals representing whether the vehicle has
to search for an empty spot or execute a parking maneuver. The enable signals are determined by the
Camera algorithm within the Vehicle Mode subsystem. Initially, the vehicle is in search mode and the
MPC controller tracks the reference path. When a free spot is found, park mode is activated and the
RL agent executes the parking maneuver.

Adaptive Model Predictive Controller

Create the adaptive MPC controller object for reference trajectory tracking using the
createMPCForParking script. For more information on adaptive MPC, see “Adaptive MPC” (Model
Predictive Control Toolbox).

createMPCForParking

Reinforcement Learning Environment

The environment for training the RL agent is the region shaded in red in the following figure. Due to
symmetry in the parking lot, training within this region is sufficient for the policy to adjust to other
regions after applying appropriate coordinate transformations to the observations. Using this smaller
training region significantly reduces training time compared to training over the entire parking lot.
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For this environment:

• The training region is a 22.5 m x 20 m space with the target spot at its horizontal center.
• The observations are the position errors Xe and Ye of the ego vehicle with respect to the target

pose, the sine and cosine of the true heading angle θ, and the lidar sensor readings.
• The vehicle speed during parking is a constant 2 m/s.
• The action signals are discrete steering angles that range between +/- 45 degrees in steps of 15

degrees.
• The vehicle is considered parked if the errors with respect to target pose are within specified

tolerances of +/- 0.75 m (position) and +/-10 degrees (orientation).
• The episode terminates if the ego vehicle goes out of the bounds of the training region, collides

with an obstacle, or parks successfully.
• The reward rt provided at time t, is:

rt = 2e− 0 . 05Xe
2 + 0 . 04Ye

2
+ 0 . 5e−40θe

2
− 0 . 05δ2 + 100f t − 50gt

Here, Xe, Ye, and θe are the position and heading angle errors of the ego vehicle from the target pose,
and δ is the steering angle. f t (0 or 1) indicates whether the vehicle has parked and gt (0 or 1)
indicates if the vehicle has collided with an obstacle at time t.

The coordinate transformations on vehicle pose X, Y, θ  observations for different parking spot
locations are as follows:
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• 1-14: no transformation
• 15-22: X‾ = Y, Y‾ = − X, θ‾ = θ− π/2
• 23-36: X‾ = 100− X, Y‾ = 60− Y, θ‾ = θ− π
• 37-40: X‾ = 60− Y, Y‾ = X, θ‾ = θ− 3π/2
• 41-52: X‾ = 100− X, Y‾ = 30− Y, θ‾ = θ + π
• 53-64: X‾ = X, Y‾ = Y − 28, θ‾ = θ

Create the observation and action specifications for the environment.

numObservations = 16;
observationInfo = rlNumericSpec([numObservations 1]);
observationInfo.Name = 'observations';

steerMax = pi/4;
discreteSteerAngles = -steerMax : deg2rad(15) : steerMax;
actionInfo = rlFiniteSetSpec(num2cell(discreteSteerAngles));
actionInfo.Name = 'actions';
numActions = numel(actionInfo.Elements);

Create the Simulink environment interface, specifying the path to the RL Agent block.

blk = [mdl '/RL Controller/RL Agent'];
env = rlSimulinkEnv(mdl,blk,observationInfo,actionInfo);

Specify a reset function for training. The autoParkingValetResetFcn function resets the initial
pose of the ego vehicle to random values at the start of each episode.

env.ResetFcn = @autoParkingValetResetFcn;

For more information on creating Simulink environments, see rlSimulinkEnv.

Create Agent

The RL agent in this example is a proximal policy optimization (PPO) agent with a discrete action
space. PPO agents rely on actor and critic representations to learn the optimal policy. The agent
maintains deep neural network-based function approximators for the actor and critic. To learn more
about PPO agents, see “Proximal Policy Optimization Agents” on page 3-42.

Set the random seed generator for reproducibility.

rng(0)

To create the critic representations, first create a deep neural network with 16 inputs and one output.
The output of the critic network is the state value function for a particular observation.

criticNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','observations')
    fullyConnectedLayer(128,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(128,'Name','fc2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(128,'Name','fc3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(1,'Name','fc4')];
criticNetwork = dlnetwork(criticNetwork);
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Create the critic for the PPO agent. For more information, see rlValueFunction and
rlOptimizerOptions.

criticOptions = rlOptimizerOptions('LearnRate',1e-3,'GradientThreshold',1);
critic = rlValueFunction(criticNetwork,observationInfo);

The outputs of the actor networks are the probabilities of taking each possible steering action when
the vehicle is in a certain state. Create the actor deep neural network.

actorNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','observations')
    fullyConnectedLayer(128,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(128,'Name','fc2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(numActions, 'Name', 'out')
    softmaxLayer('Name','actionProb')];
actorNetwork = dlnetwork(actorNetwork);

Create a discrete categorical actor for the PPO agent. For more information, see
rlDiscreteCategoricalActor.

actorOptions = rlOptimizerOptions('LearnRate',2e-4,'GradientThreshold',1);
actor = rlDiscreteCategoricalActor(actorNetwork,observationInfo,actionInfo);

Specify the agent options and create the PPO agent. For more information on PPO agent options, see
rlPPOAgentOptions.

agentOpts = rlPPOAgentOptions(...
    'SampleTime',Ts,...
    'ActorOptimizerOptions',actorOptions,...
    'CriticOptimizerOptions',criticOptions,...
    'ExperienceHorizon',200,...
    'ClipFactor',0.2,... 
    'EntropyLossWeight',0.01,...
    'MiniBatchSize',64,...
    'NumEpoch',3,...
    'AdvantageEstimateMethod',"gae",...
    'GAEFactor',0.95,...
    'DiscountFactor',0.998);
agent = rlPPOAgent(actor,critic,agentOpts);

During training, the agent collects experiences until it reaches experience horizon of 200 steps or the
episode terminates and then trains from mini-batches of 64 experiences for three epochs. An
objective function clip factor of 0.2 improves training stability and a discount factor value of 0.998
encourages long term rewards. Variance in critic the output is reduced by the generalized advantage
estimate method with a GAE factor of 0.95.

Train Agent

For this example, you train the agent for a maximum of 10000 episodes, with each episode lasting a
maximum of 200 time steps. The training terminates when the maximum number of episodes is
reached or the average reward over 100 episodes exceeds 100.

Specify the options for training using an rlTrainingOptions object.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',10000,...
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    'MaxStepsPerEpisode',200,...
    'ScoreAveragingWindowLength',200,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',80);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
    trainingStats = train(agent,env,trainOpts);
else
    load('rlAutoParkingValetAgent.mat','agent');
end

Simulate Agent

Simulate the model to park the vehicle in the free parking spot. To simulate the vehicle parking in
different locations, change the free spot location in the following code.

freeSpotIdx = 7;  % free spot location
sim(mdl);
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The vehicle reaches the target pose within the specified error tolerances of +/- 0.75 m (position) and
+/-10 degrees (orientation).

To view the ego vehicle position and orientation, open the Ego Vehicle Pose scope.

5 Train and Validate Agents

5-182



See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Policies and Value Functions” on page 4-2
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Train DDPG Agent for Path-Following Control
This example shows how to train a deep deterministic policy gradient (DDPG) agent for path-
following control (PFC) in Simulink®. For more information on DDPG agents, see “Deep
Deterministic Policy Gradient Agents” on page 3-29.

Simulink Model

The reinforcement learning environment for this example is a simple bicycle model for the ego car
and a simple longitudinal model for the lead car. The training goal is to make the ego car travel at a
set velocity while maintaining a safe distance from lead car by controlling longitudinal acceleration
and braking, and also while keeping the ego car travelling along the centerline of its lane by
controlling the front steering angle. For more information on PFC, see Path Following Control System
(Model Predictive Control Toolbox). The ego car dynamics are specified by the following parameters.

m = 1600;   % total vehicle mass (kg)
Iz = 2875;  % yaw moment of inertia (mNs^2)
lf = 1.4;   % longitudinal distance from center of gravity to front tires (m)
lr = 1.6;   % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
tau = 0.5;  % longitudinal time constant

Specify the initial position and velocity for the two vehicles.

x0_lead = 50;   % initial position for lead car (m)
v0_lead = 24;   % initial velocity for lead car (m/s)
x0_ego = 10;    % initial position for ego car (m)
v0_ego = 18;    % initial velocity for ego car (m/s)

Specify the standstill default spacing (m), time gap (s), and driver-set velocity (m/s).

D_default = 10;
t_gap = 1.4;
v_set = 28;

To simulate the physical limitations of the vehicle dynamics, constrain the acceleration to the range
[–3,2] (m/s^2), and the steering angle to the range [–0.2618,0.2618] (rad), that is -15 and 15
degrees.

amin_ego = -3;
amax_ego = 2;
umin_ego = -0.2618; % +15 deg
umax_ego = 0.2618; % -15 deg

The curvature of the road is defined by a constant 0.001 (m−1). The initial value for lateral deviation
is 0.2 m and the initial value for the relative yaw angle is –0.1 rad.

rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Define the sample time Ts and simulation duration Tf in seconds.

Ts = 0.1;
Tf = 60;
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Open the model.

mdl = 'rlPFCMdl';
open_system(mdl)
agentblk = [mdl '/RL Agent'];

For this model:

• The action signal consists of acceleration and steering angle actions. The acceleration action
signal takes value between –3 and 2 (m/s^2). The steering action signal takes a value between –15
degrees (–0.2618 rad) and 15 degrees (0.2618 rad).

• The reference velocity for the ego car Vref  is defined as follows. If the relative distance is less than
the safe distance, the ego car tracks the minimum of the lead car velocity and driver-set velocity.
In this manner, the ego car maintains some distance from the lead car. If the relative distance is
greater than the safe distance, the ego car tracks the driver-set velocity. In this example, the safe
distance is defined as a linear function of the ego car longitudinal velocity V, that is,
tgap * V + Ddefault. The safe distance determines the tracking velocity for the ego car.

• The observations from the environment contain the longitudinal measurements: the velocity error
eV = Vref − Vego, its integral ∫e, and the ego car longitudinal velocity V. In addition, the
observations contain the lateral measurements: the lateral deviation e1, relative yaw angle e2,
their derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation terminates when the lateral deviation |e1 | > 1, when the longitudinal velocity
Vego < 0 . 5, or when the relative distance between the lead car and ego car Drel < 0.

• The reward rt, provided at every time step t, is

rt = − (100e1
2 + 500ut − 1

2 + 10eV
2 + 100at − 1

2 ) × 1e−3− 10Ft + 2Ht + Mt
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where ut − 1 is the steering input from the previous time step t − 1, at − 1 is the acceleration input
from the previous time step. The three logical values are as follows.

• Ft = 1if simulation is terminated, otherwise Ft = 0
• Ht = 1 if lateral error e1

2 < 0 . 01, otherwise Ht = 0
• Mt = 1 if velocity error eV

2 < 1, otherwise Mt = 0

The three logical terms in the reward encourage the agent to make both lateral error and velocity
error small, and in the meantime, penalize the agent if the simulation is terminated early.

Create Environment Interface

Create an environment interface for the Simulink model.

Create the observation specification.

observationInfo = rlNumericSpec([9 1],'LowerLimit',-inf*ones(9,1),'UpperLimit',inf*ones(9,1));
observationInfo.Name = 'observations';

Create the action specification.

actionInfo = rlNumericSpec([2 1],'LowerLimit',[-3;-0.2618],'UpperLimit',[2;0.2618]);
actionInfo.Name = 'accel;steer';

Create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

To define the initial conditions, specify an environment reset function using an anonymous function
handle. The reset function localResetFcn, which is defined at the end of the example, randomizes
the initial position of the lead car, the lateral deviation, and the relative yaw angle.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward given observations and actions by using a critic
value function representation. To create the critic, first create a deep neural network with two inputs,
the state and action, and one output. For more information on creating a deep neural network value
function representation, see “Create Policies and Value Functions” on page 4-2.

L = 100; % number of neurons
statePath = [
    featureInputLayer(9,'Normalization','none','Name','observation')
    fullyConnectedLayer(L,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(L,'Name','fc2')
    additionLayer(2,'Name','add')
    reluLayer('Name','relu2')
    fullyConnectedLayer(L,'Name','fc3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(1,'Name','fc4')];
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actionPath = [
    featureInputLayer(2,'Normalization','none','Name','action')
    fullyConnectedLayer(L,'Name','fc5')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);    
criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');

criticNetwork = dlnetwork(criticNetwork);

View the critic network configuration.

figure
plot(layerGraph(criticNetwork))

Specify options for the critic optimizer using rlOptimizerOptions.

criticOptions = rlOptimizerOptions('LearnRate',1e-3,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

Create the critic function using the specified deep neural network. You must also specify the action
and observation info for the critic, which you obtain from the environment interface. For more
information, see rlQValueFunction.

critic = rlQValueFunction(criticNetwork,observationInfo,actionInfo,...
    'ObservationInputNames','observation','ActionInputNames','action');
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A DDPG agent decides which action to take given observations by using an actor representation. To
create the actor, first create a deep neural network with one input, the observation, and one output,
the action.

Construct the actor similarly to the critic. For more information, see
rlContinuousDeterministicActor.

actorNetwork = [
    featureInputLayer(9,'Normalization','none','Name','observation')
    fullyConnectedLayer(L,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(L,'Name','fc2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(L,'Name','fc3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(2,'Name','fc4')
    tanhLayer('Name','tanh1')
    scalingLayer('Name','ActorScaling1','Scale',[2.5;0.2618],'Bias',[-0.5;0])];
actorNetwork = dlnetwork(actorNetwork);
actorOptions = rlOptimizerOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-4);
actor = rlContinuousDeterministicActor(actorNetwork,observationInfo,actionInfo);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
    'SampleTime',Ts,...
    'ActorOptimizerOptions',actorOptions,...
    'CriticOptimizerOptions',criticOptions,...
    'ExperienceBufferLength',1e6);
agentOptions.NoiseOptions.Variance = [0.6;0.1];
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training episode for at most 10000 episodes, with each episode lasting at most
maxsteps time steps.

• Display the training progress in the Episode Manager dialog box (set the Verbose and Plots
options).

• Stop training when the agent receives an cumulative episode reward greater than 1700.

For more information, see rlTrainingOptions.

maxepisodes = 1e4;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'Verbose',false,...
    'Plots','training-progress',...
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    'StopTrainingCriteria','EpisodeReward',...
    'StopTrainingValue',1700);

Train the agent using the train function. Training is a computationally intensive process that takes
several minutes to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOpts);
else
    % Load a pretrained agent for the example.
    load('SimulinkPFCDDPG.mat','agent')       
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate the agent within the Simulink environment
by uncommenting the following commands. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.
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e1_initial = -0.4;
e2_initial = 0.1;
x0_lead = 80;
sim(mdl)

The following plots show the simulation results when the lead car is 70 (m) ahead of the ego car.

• In the first 35 seconds, the relative distance is greater than the safe distance (bottom-right plot),
so the ego car tracks the set velocity (top-right plot). To speed up and reach the set velocity, the
acceleration is mostly nonnegative (top-left plot).

• From 35 to 42 seconds, the relative distance is mostly less than the safe distance (bottom-right
plot), so the ego car tracks the minimum of the lead velocity and set velocity. Because the lead
velocity is less than the set velocity (top-right plot), to track the lead velocity, the acceleration
becomes nonzero (top-left plot).

• From 42 to 58 seconds, the ego car tracks the set velocity (top-right plot) and the acceleration
remains zero (top-left plot).

• From 58 to 60 seconds, the relative distance becomes less than the safe distance (bottom-right
plot), so the ego car slows down and tracks the lead velocity.

• The bottom-left plot shows the lateral deviation. As shown in the plot, the lateral deviation is
greatly decreased within 1 second. The lateral deviation remains less than 0.05 m.

Close the Simulink model.

bdclose(mdl)
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Reset Function

function in = localResetFcn(in) 
in = setVariable(in,'x0_lead',40+randi(60,1,1));    % random value for initial position of lead car
in = setVariable(in,'e1_initial', 0.5*(-1+2*rand)); % random value for lateral deviation
in = setVariable(in,'e2_initial', 0.1*(-1+2*rand)); % random value for relative yaw angle
end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Policies and Value Functions” on page 4-2
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Train DQN Agent for Lane Keeping Assist Using Parallel
Computing

This example shows how to train a deep Q-learning network (DQN) agent for lane keeping assist
(LKA) in Simulink® using parallel training. For an example that shows how to train the agent without
using parallel training, see “Train DQN Agent for Lane Keeping Assist” on page 5-166.

For more information on DQN agents, see “Deep Q-Network Agents” on page 3-21. For an example
that trains a DQN agent in MATLAB®, see “Train DQN Agent to Balance Cart-Pole System” on page
5-24.

DQN Parallel Training Overview

In a DQN agent, each worker generates new experiences from its copy of the agent and the
environment. After every N steps, the worker sends experiences to the host agent. The host agent
updates its parameters as follows.

• For asynchronous training, the host agent learns from received experiences without waiting for all
workers to send experiences, and sends the updated parameters back to the worker that provided
the experiences. Then, the worker continues to generate experiences from its environment using
the updated parameters.

• For synchronous training, the host agent waits to receive experiences from all of the workers and
learns from these experiences. The host then sends updated parameters to all the workers at the
same time. Then, all workers continue to generate experiences using the updated parameters.

Simulink Model for Ego Car

The reinforcement learning environment for this example is a simple bicycle model for ego vehicle
dynamics. The training goal is to keep the ego vehicle traveling along the centerline of the lanes by
adjusting the front steering angle. This example uses the same vehicle model as “Train DQN Agent
for Lane Keeping Assist” on page 5-166.

m = 1575;   % total vehicle mass (kg)
Iz = 2875;  % yaw moment of inertia (mNs^2)
lf = 1.2;   % longitudinal distance from center of gravity to front tires (m)
lr = 1.6;   % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
Vx = 15;    % longitudinal velocity (m/s)

Define the sample time Ts and simulation duration T in seconds.

Ts = 0.1;
T = 15;

The output of the LKA system is the front steering angle of the ego car. To simulate the physical
steering limits of the ego car, constrain the steering angle to the range [–0.5,0.5] rad.

u_min = -0.5;
u_max = 0.5;

The curvature of the road is defined by a constant 0.001 (m−1). The initial value for the lateral
deviation is 0.2 m and the initial value for the relative yaw angle is –0.1 rad.
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rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Open the model.

mdl = 'rlLKAMdl';
open_system(mdl)
agentblk = [mdl '/RL Agent'];

For this model:

• The steering-angle action signal from the agent to the environment is from –15 degrees to 15
degrees.

• The observations from the environment are the lateral deviation e1, relative yaw angle e2, their
derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation is terminated when the lateral deviation |e1 | > 1 .

• The reward rt, provided at every time step t, is

rt = − (10e1
2 + 5e2

2 + 2u2 + 5ė1
2 + 5ė2

2)

where u is the control input from the previous time step t − 1.

Create Environment Interface

Create a reinforcement learning environment interface for the ego vehicle.

Define the observation information.
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observationInfo = rlNumericSpec([6 1],'LowerLimit',-inf*ones(6,1),'UpperLimit',inf*ones(6,1));
observationInfo.Name = 'observations';
observationInfo.Description = 'information on lateral deviation and relative yaw angle';

Define the action information.

actionInfo = rlFiniteSetSpec((-15:15)*pi/180);
actionInfo.Name = 'steering';

Create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

The interface has a discrete action space where the agent can apply one of 31 possible steering
angles from –15 degrees to 15 degrees. The observation is the six-dimensional vector containing
lateral deviation, relative yaw angle, as well as their derivatives and integrals with respect to time.

To define the initial condition for the lateral deviation and relative yaw angle, specify an environment
reset function using an anonymous function handle. localResetFcn, which is defined at the end of
this example, randomizes the initial lateral deviation and relative yaw angle.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DQN Agent

DQN agents can use multi-output Q-value critic approximators, which are generally more efficient. A
multi-output approximator has observations as inputs and state-action values as outputs. Each output
element represents the expected cumulative long-term reward for taking the corresponding discrete
action from the state indicated by the observation inputs.

To create the critic, first create a deep neural network with one input (the six-dimensional observed
state) and one output vector with 31 elements (evenly spaced steering angles from -15 to 15
degrees). For more information on creating a deep neural network value function representation, see
“Create Policies and Value Functions” on page 4-2.

nI = observationInfo.Dimension(1);  % number of inputs (6)
nL = 120;                           % number of neurons
nO = numel(actionInfo.Elements);    % number of outputs (31)

dnn = [
    featureInputLayer(nI,'Normalization','none','Name','state')
    fullyConnectedLayer(nL,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(nL,'Name','fc2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(nO,'Name','fc3')];
dnn = dlnetwork(dnn);

View the network configuration.

figure
plot(layerGraph(dnn))
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Specify options for the critic optimizer using rlOptimizerOptions.

criticOptions = rlOptimizerOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation info for the critic, which you obtain from the environment
interface. For more information, see rlVectorQValueFunction.

critic = rlVectorQValueFunction(dnn,observationInfo,actionInfo);

To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.

agentOpts = rlDQNAgentOptions(...
    'SampleTime',Ts,...
    'UseDoubleDQN',true,...
    'CriticOptimizerOptions',criticOptions,...
    'ExperienceBufferLength',1e6,...
    'MiniBatchSize',256);

agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-4;

Then create the DQN agent using the specified critic representation and agent options. For more
information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOpts);
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Training Options

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 10000 episodes, with each episode lasting at most ceil(T/Ts)
time steps.

• Display the training progress in the Episode Manager dialog box only (set the Plots and
Verbose options accordingly).

• Stop training when the episode reward reaches -1.
• Save a copy of the agent for each episode where the cumulative reward is greater than 100.

For more information, see rlTrainingOptions.

maxepisodes = 10000;
maxsteps = ceil(T/Ts);
trainOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes, ...
    'MaxStepsPerEpisode',maxsteps, ...
    'Verbose',false,...
    'Plots','none',...
    'StopTrainingCriteria','EpisodeReward',...
    'StopTrainingValue', -1,...
    'SaveAgentCriteria','EpisodeReward',...
    'SaveAgentValue',100);

Parallel Training Options

To train the agent in parallel, specify the following training options.

• Set the UseParallel option to true.
• Train agent in parallel asynchronously by setting the ParallelizationOptions.Mode option to

"async".

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = "async";

For more information, see rlTrainingOptions.

Train Agent

Train the agent using the train function. Training the agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true. Due to
randomness of the parallel training, you can expect different training results from the plot below. The
plot shows the result of training with four workers.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load pretrained agent for the example.
    load('SimulinkLKADQNParallel.mat','agent')
end
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Simulate DQN Agent

To validate the performance of the trained agent, uncomment the following two lines and simulate the
agent within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.

e1_initial = -0.4;
e2_initial = 0.2;
sim(mdl)

As shown below, the lateral error (middle plot) and relative yaw angle (bottom plot) are both driven to
zero. The vehicle starts from off centerline (–0.4 m) and nonzero yaw angle error (0.2 rad). The LKA
enables the ego car to travel along the centerline after 2.5 seconds. The steering angle (top plot)
shows that the controller reaches steady state after 2 seconds.
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Local Function

function in = localResetFcn(in)
% reset
in = setVariable(in,'e1_initial', 0.5*(-1+2*rand)); % random value for lateral deviation
in = setVariable(in,'e2_initial', 0.1*(-1+2*rand)); % random value for relative yaw angle
end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-3
• “Create Policies and Value Functions” on page 4-2
• “Train Agents Using Parallel Computing and GPUs” on page 5-8

See Also

Related Examples
• “Train DQN Agent for Lane Keeping Assist” on page 5-166
• “Train AC Agent to Balance Cart-Pole System Using Parallel Computing” on page 5-116
• “Train Biped Robot to Walk Using Reinforcement Learning Agents” on page 5-200
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Train Biped Robot to Walk Using Reinforcement Learning
Agents

This example shows how to train a biped robot to walk using both a deep deterministic policy
gradient (DDPG) agent and a twin-delayed deep deterministic policy gradient (TD3) agent. In the
example, you also compare the performance of these trained agents. The robot in this example is
modeled in Simscape™ Multibody™.

For more information on these agents, see “Deep Deterministic Policy Gradient Agents” on page 3-29
and “Twin-Delayed Deep Deterministic Policy Gradient Agents” on page 3-33.

For the purpose of comparison in this example, this example trains both agents on the biped robot
environment with the same model parameters. The example also configures the agents to have the
following settings in common.

• Initial condition strategy of the biped robot
• Network structure of actor and critic, inspired by [1]
• Options for actor and critic representations
• Training options (sample time, discount factor, mini-batch size, experience buffer length,

exploration noise)

Biped Robot Model

The reinforcement learning environment for this example is a biped robot. The training goal is to
make the robot walk in a straight line using minimal control effort.

Load the parameters of the model into the MATLAB® workspace.

robotParametersRL
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Open the Simulink model.

mdl = 'rlWalkingBipedRobot';
open_system(mdl)

The robot is modeled using Simscape Multibody.

For this model:

• In the neutral 0 rad position, both of the legs are straight and the ankles are flat.
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• The foot contact is modeled using the Spatial Contact Force (Simscape Multibody) block.
• The agent can control 3 individual joints (ankle, knee, and hip) on both legs of the robot by

applying torque signals from -3 to 3 N·m. The actual computed action signals are normalized
between -1 and 1.

The environment provides the following 29 observations to the agent.

• Y (lateral) and Z (vertical) translations of the torso center of mass. The translation in the Z
direction is normalized to a similar range as the other observations.

• X (forward), Y (lateral), and Z (vertical) translation velocities.
• Yaw, pitch, and roll angles of the torso.
• Yaw, pitch, and roll angular velocities of the torso.
• Angular positions and velocities of the three joints (ankle, knee, hip) on both legs.
• Action values from the previous time step.

The episode terminates if either of the following conditions occur.

• The robot torso center of mass is less than 0.1 m in the Z direction (the robot falls) or more than 1
m in the either Y direction (the robot moves too far to the side).

• The absolute value of either the roll, pitch, or yaw is greater than 0.7854 rad.

The following reward function rt, which is provided at every time step is inspired by [2].

rt = vx− 3y2− 50z2 + 25Ts
Tf − 0 . 02∑

i
ut − 1

i 2

Here:

• vx is the translation velocity in the X direction (forward toward goal) of the robot.
• y is the lateral translation displacement of the robot from the target straight line trajectory.
• z is the normalized vertical translation displacement of the robot center of mass.
• ut − 1

i  is the torque from joint i from the previous time step.

• Ts is the sample time of the environment.
• Tf is the final simulation time of the environment.

This reward function encourages the agent to move forward by providing a positive reward for
positive forward velocity. It also encourages the agent to avoid episode termination by providing a
constant reward (25Ts

Tf ) at every time step. The other terms in the reward function are penalties for
substantial changes in lateral and vertical translations, and for the use of excess control effort.

Create Environment Interface

Create the observation specification.

numObs = 29;
obsInfo = rlNumericSpec([numObs 1]);
obsInfo.Name = 'observations';

Create the action specification.
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numAct = 6;
actInfo = rlNumericSpec([numAct 1],'LowerLimit',-1,'UpperLimit',1);
actInfo.Name = 'foot_torque';

Create the environment interface for the walking robot model.

blk = [mdl,'/RL Agent'];
env = rlSimulinkEnv(mdl,blk,obsInfo,actInfo);
env.ResetFcn = @(in) walkerResetFcn(in,upper_leg_length/100,lower_leg_length/100,h/100);

Select and Create Agent for Training

This example provides the option to train the robot either using either a DDPG or TD3 agent. To
simulate the robot with the agent of your choice, set the AgentSelection flag accordingly.

AgentSelection = 'TD3';
switch AgentSelection
    case 'DDPG'
        agent = createDDPGAgent(numObs,obsInfo,numAct,actInfo,Ts);
    case 'TD3'
        agent = createTD3Agent(numObs,obsInfo,numAct,actInfo,Ts);
    otherwise
        disp('Enter DDPG or TD3 for AgentSelection')
end

The createDDPGAgent and createTD3Agent helper functions perform the following actions.

• Create actor and critic networks.
• Specify options for actor and critic representations.
• Create actor and critic representations using created networks and specified options.
• Configure agent specific options.
• Create agent.

DDPG Agent

A DDPG agent approximates the long-term reward given observations and actions using a critic value
function representation. A DDPG agent decides which action to take given observations by using an
actor representation. The actor and critic networks for this example are inspired by [1].

For details on the creating the DDPG agent, see the createDDPGAgent helper function. For
information on configuring DDPG agent options, see rlDDPGAgentOptions.

For more information on creating a deep neural network value function representation, see “Create
Policies and Value Functions” on page 4-2. For an example that creates neural networks for DDPG
agents, see “Train DDPG Agent to Control Double Integrator System” on page 5-47.

TD3 Agent

A TD3 agent approximates the long-term reward given observations and actions using two critic value
function representations. A TD3 agent decides which action to take given observations using an actor
representation. The structure of the actor and critic networks used for this agent are the same as the
ones used for DDPG agent.

A DDPG agent can overestimate the Q value. Since the agent uses the Q value to update its policy
(actor), the resultant policy can be suboptimal and accumulating training errors can lead to divergent
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behavior. The TD3 algorithm is an extension of DDPG with improvements that make it more robust by
preventing overestimation of Q values [3].

• Two critic networks — TD3 agents learn two critic networks independently and use the minimum
value function estimate to update the actor (policy). Doing so prevents accumulation of error in
subsequent steps and overestimation of Q values.

• Addition of target policy noise — Adding clipped noise to value functions smooths out Q function
values over similar actions. Doing so prevents learning an incorrect sharp peak of noisy value
estimate.

• Delayed policy and target updates — For a TD3 agent, delaying the actor network update allows
more time for the Q function to reduce error (get closer to the required target) before updating
the policy. Doing so prevents variance in value estimates and results in a higher quality policy
update.

For details on the creating the TD3 agent, see the createTD3Agent helper function. For information
on configuring TD3 agent options, see rlTD3AgentOptions.

Specify Training Options and Train Agent

For this example, the training options for the DDPG and TD3 agents are the same.

• Run each training session for 2000 episodes with each episode lasting at most maxSteps time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option).

• Terminate the training only when it reaches the maximum number of episodes (maxEpisodes).
Doing so allows the comparison of the learning curves for multiple agents over the entire training
session.

For more information and additional options, see rlTrainingOptions.

maxEpisodes = 2000;
maxSteps = floor(Tf/Ts);
trainOpts = rlTrainingOptions(...
    'MaxEpisodes',maxEpisodes,...
    'MaxStepsPerEpisode',maxSteps,...
    'ScoreAveragingWindowLength',250,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','EpisodeCount',...
    'StopTrainingValue',maxEpisodes,...
    'SaveAgentCriteria','EpisodeCount',...
    'SaveAgentValue',maxEpisodes);

To train the agent in parallel, specify the following training options. Training in parallel requires
Parallel Computing Toolbox™. If you do not have Parallel Computing Toolbox software installed, set
UseParallel to false.

• Set the UseParallel option to true.
• Train the agent in parallel asynchronously.
• After every 32 steps, have each worker send experiences to the parallel pool client (the MATLAB®

process which starts the training). DDPG and TD3 agents require workers to send experiences to
the client.
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trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = 'async';
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 32;
trainOpts.ParallelizationOptions.DataToSendFromWorkers = 'Experiences';

Train the agent using the train function. This process is computationally intensive and takes several
hours to complete for each agent. To save time while running this example, load a pretrained agent
by setting doTraining to false. To train the agent yourself, set doTraining to true. Due to
randomness in the parallel training, you can expect different training results from the plots that
follow. The pretrained agents were trained in parallel using four workers.

doTraining = false;
if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load a pretrained agent for the selected agent type.
    if strcmp(AgentSelection,'DDPG')
       load('rlWalkingBipedRobotDDPG.mat','agent')
    else
       load('rlWalkingBipedRobotTD3.mat','agent')
    end  
end
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For the preceding example training curves, the average time per training step for the DDPG and TD3
agents are 0.11 and 0.12 seconds, respectively. The TD3 agent takes more training time per step
because it updates two critic networks compared to the single critic used for DDPG.

Simulate Trained Agents

Fix the random generator seed for reproducibility.

rng(0)

To validate the performance of the trained agent, simulate it within the biped robot environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',maxSteps);
experience = sim(env,agent,simOptions);
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Compare Agent Performance

For the following agent comparison, each agent was trained five times using a different random seed
each time. Due to the random exploration noise and the randomness in the parallel training, the
learning curve for each run is different. Since the training of agents for multiple runs takes several
days to complete, this comparison uses pretrained agents.

For the DDPG and TD3 agents, plot the average and standard deviation of the episode reward (top
plot) and the episode Q0 value (bottom plot). The episode Q0 value is the critic estimate of the
discounted long-term reward at the start of each episode given the initial observation of the
environment. For a well-designed critic, the episode Q0 value approaches the true discounted long-
term reward.

comparePerformance('DDPGAgent','TD3Agent')
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Based on the Learning curve comparison plot:

• The DDPG agent appears to pick up learning faster (around episode number 600 on average) but
hits a local minimum. TD3 starts slower but eventually achieves higher rewards than DDPG as it
avoids overestimation of Q values.

• The TD3 agent shows a steady improvement in its learning curve, which suggests improved
stability when compared to the DDPG agent.

Based on the Episode Q0 comparison plot:

• For the TD3 agent, the critic estimate of the discounted long-term reward (for 2000 episodes) is
lower compared to the DDPG agent. This difference is because the TD3 algorithm takes a
conservative approach in updating its targets by using a minimum of two Q functions. This
behavior is further enhanced because of delayed updates to the targets.

• Although the TD3 estimate for these 2000 episodes is low, the TD3 agent shows a steady increase
in the episode Q0 values, unlike the DDPG agent.

In this example, the training was stopped at 2000 episodes. For a larger training period, the TD3
agent with its steady increase in estimates shows the potential to converge to the true discounted
long-term reward.

For another example on how to train a humanoid robot to walk using a DDPG agent, see “Train
Humanoid Walker” (Simscape Multibody). For an example on how to train a quadruped robot to walk
using a DDPG agent, see “Quadruped Robot Locomotion Using DDPG Agent” on page 5-211.
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Quadruped Robot Locomotion Using DDPG Agent
This example shows how to train a quadruped robot to walk using a deep deterministic policy
gradient (DDPG) agent. The robot in this example is modeled using Simscape™ Multibody™. For
more information on DDPG agents, see “Twin-Delayed Deep Deterministic Policy Gradient Agents” on
page 3-33.

Load the necessary parameters into the base workspace in MATLAB®.

initializeRobotParameters

Quadruped Robot Model

The environment for this example is a quadruped robot, and the training goal is to make the robot
walk in a straight line using minimal control effort.

Open the model.

mdl = 'rlQuadrupedRobot';
open_system(mdl)
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The robot is modeled using Simscape Multibody with its main structural components consisting of
four legs and a torso. The legs are connected to the torso through revolute joints that enable rotation
of the legs with respect to the torso. The joints are actuated by torque signals provided by the RL
Agent.

Observations

The robot environment provides 44 observations to the agent, each normalized between –1 and 1.
These observations are:

• Y (vertical) and Y (lateral) position of the torso center of mass
• Quaternion representing the orientation of the torso
• X (forward), Y (vertical), and Z (lateral) velocities of the torso at the center of mass
• Roll, pitch, and yaw rates of the torso
• Angular positions and velocities of the hip and knee joints for each leg
• Normal and friction force due to ground contact for each leg
• Action values (torque for each joint) from the previous time step

For all four legs, the initial values for the hip and knee joint angles are set to –0.8234 and 1.6468
radians, respectively. The neutral positions of the joints are set at 0 radian. The legs are in neutral
position when they are stretched to their maximum and are aligned perpendicularly to the ground.

Actions

The agent generates eight actions normalized between –1 and 1. After multiplying with a scaling
factor, these correspond to the eight joint torque signals for the revolute joints. The overall joint
torque bounds are +/– 10 N·m for each joint.
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Reward

The following reward is provided to the agent at each time step during training. This reward function
encourages the agent to move forward by providing a positive reward for positive forward velocity. It
also encourages the agent to avoid early termination by providing a constant reward (25Ts/Tf ) at
each time step. The remaining terms in the reward function are penalties that discourage unwanted
states, such as large deviations from the desired height and orientation or the use of excessive joint
torques.

rt = vx + 25
Ts
Tf
− 50y2− 20θ2− 0 . 02∑

i
ut − 1

i 2

where

• vx is the velocity of the torso's center of mass in the x-direction.
• Ts and Tf  are the sample time and final simulation time of the environment, respectively.
• y is the scaled height error of the torso's center of mass from the desired height of 0.75 m.
• θ is the pitch angle of the torso.
• ut − 1

i is the action value for joint i from the previous time step.

Episode Termination

During training or simulation, the episode terminates if any of the following situations occur.

• The height of the torso center of mass from the ground is below 0.5 m (fallen).
• The head or tail of the torso is below the ground.
• Any knee joint is below the ground.
• Roll, pitch, or yaw angles are outside bounds (+/– 0.1745, +/– 0.1745, and +/– 0.3491 radians,

respectively).

Create Environment Interface

Specify the parameters for the observation set.

numObs = 44;
obsInfo = rlNumericSpec([numObs 1]);
obsInfo.Name = 'observations';

Specify the parameters for the action set.

numAct = 8;
actInfo = rlNumericSpec([numAct 1],'LowerLimit',-1,'UpperLimit', 1);
actInfo.Name = 'torque';

Create the environment using the reinforcement learning model.

blk = [mdl, '/RL Agent'];
env = rlSimulinkEnv(mdl,blk,obsInfo,actInfo);

During training, the reset function introduces random deviations into the initial joint angles and
angular velocities.

env.ResetFcn = @quadrupedResetFcn;
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Create DDPG agent

The DDPG agent approximates the long-term reward given observations and actions by using a critic
value function representation. The agent also decides which action to take given the observations,
using an actor representation. The actor and critic networks for this example are inspired by [2].

For more information on creating a deep neural network value function representation, see “Create
Policies and Value Functions” on page 4-2. For an example that creates neural networks for DDPG
agents, see “Train DDPG Agent to Control Double Integrator System” on page 5-47.

Set the random seed.

rng(0)

Create the networks in the MATLAB workspace using the createNetworks helper function.

createNetworks

You can also create your actor and critic networks interactively using the Deep Network Designer
app.

View the critic network configuration.

plot(criticNetwork)

View the actor network configuration.

plot(actorNetwork)
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Specify the agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions();
agentOptions.SampleTime = Ts;
agentOptions.DiscountFactor = 0.99;
agentOptions.MiniBatchSize = 128;
agentOptions.ExperienceBufferLength = 1e6;
agentOptions.TargetSmoothFactor = 1e-3;
agentOptions.NoiseOptions.MeanAttractionConstant = 0.15;
agentOptions.NoiseOptions.Variance = 0.1;

Specify optimizer options for the actor and critic.

agentOptions.ActorOptimizerOptions.Algorithm = "adam";
agentOptions.ActorOptimizerOptions.LearnRate = 1e-4;
agentOptions.ActorOptimizerOptions.GradientThreshold = 1;
agentOptions.ActorOptimizerOptions.L2RegularizationFactor = 1e-5;

agentOptions.CriticOptimizerOptions.Algorithm = "adam";
agentOptions.CriticOptimizerOptions.LearnRate = 1e-3;
agentOptions.CriticOptimizerOptions.GradientThreshold = 1;
agentOptions.CriticOptimizerOptions.L2RegularizationFactor = 2e-4;

Create the rlDDPGAgent object for the agent.

agent = rlDDPGAgent(actor,critic,agentOptions);
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Specify Training Options

To train the agent, first specify the following training options:

• Run each training episode for at most 10,000 episodes, with each episode lasting at most
maxSteps time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option).
• Stop training when the agent receives an average cumulative reward greater than 190 over 250

consecutive episodes.
• Save a copy of the agent for each episode where the cumulative reward is greater than 220.

maxEpisodes = 10000;
maxSteps = floor(Tf/Ts);  
trainOpts = rlTrainingOptions(...
    'MaxEpisodes',maxEpisodes,...
    'MaxStepsPerEpisode',maxSteps,...
    'ScoreAveragingWindowLength',250,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',190,...                   
    'SaveAgentCriteria','EpisodeReward',... 
    'SaveAgentValue',220);

To train the agent in parallel, specify the following training options. Training in parallel requires
Parallel Computing Toolbox™ software. If you do not have Parallel Computing Toolbox™ software
installed, set UseParallel to false.

• Set the UseParallel option to true.
• Train the agent in parallel asynchronously.
• DDPG agents require workers to send 'Experiences' to the host.

trainOpts.UseParallel = true;                    
trainOpts.ParallelizationOptions.Mode = 'async';
trainOpts.ParallelizationOptions.DataToSendFromWorkers = 'Experiences';

Train Agent

Train the agent using the train function. Due to the complexity of the robot model, this process is
computationally intensive and takes several hours to complete. To save time while running this
example, load a pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true. Due to the randomness of parallel training, you can expect different training
results from the plot below.

doTraining = false;
if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load a pretrained agent for the example.
    load('rlQuadrupedAgent.mat','agent')
end
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Simulate Trained Agent

Fix the random generator seed for reproducibility.

rng(0)

To validate the performance of the trained agent, simulate it within the robot environment. For more
information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',maxSteps);
experience = sim(env,agent,simOptions);
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Train SAC Agent for Ball Balance Control
This example shows how to train a soft actor-critic (SAC) reinforcement learning agent to control a
robot arm for a ball-balancing task.

Introduction

The robot arm in this example is a Kinova Gen3 robot, which is a seven degree-of-freedom (DOF)
manipulator. The arm is tasked to balance a ping pong ball at the center of a flat surface (plate)
attached to the robot gripper. Only the final two joints are actuated and contribute to motion in the
pitch and roll axes as shown in the following figure. The remaining joints are fixed and do not
contribute to motion.

Open the Simulink® model to view the system. The model contains a Kinova Ball Balance subsystem
connected to an RL Agent block. The agent applies an action to the robot subsystem and receives the
resulting observation, reward, and is-done signals.

open_system("rlKinovaBallBalance")
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View to the Kinova Ball Balance subsystem.

open_system("rlKinovaBallBalance/Kinova Ball Balance")

In this model:

• The physical components of the system (manipulator, ball, and plate) are modeled using
Simscape™ Multibody™ components.
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• The plate is constrained to the end effector of the manipulator.
• The ball has six degrees of freedom and can move freely in space.
• Contact forces between the ball and plate are modeled using the Spatial Contact Force block.
• Control inputs to the manipulator are the torque signals for the actuated joints.

If you have the Robotics System Toolbox Robot Library Data support package, you can view a 3-D
animation of the manipulator in the Mechanics Explorer. To do so, open the 7 DOF Manipulator
subsystem and set its Visualization parameter to 3D Mesh. If you do have the support package
installed, set the Visualization parameter to None. To download and install the support package, use
the Add-On Explorer. For more information see “Get and Manage Add-Ons”.

Create the parameters for the example by running the kinova_params script included with this
example. When you have the Robotics System Toolbox Robot Library Data support package installed,
this script also adds the necessary mesh files to the MATLAB® path.

kinova_params

Define Environment

To train a reinforcement learning agent, you must define the environment with which it will interact.
For the ball balancing environment:

• The observations are represented by a 22 element vector that contains information about the
positions (sine and cosine of joint angles) and velocities (joint angle derivatives) of the two
actuated joints, positions (x and y distances from plate center) and velocities (x and y derivatives)
of the ball, orientation (quaternions) and velocities (quaternion derivatives) of the plate, joint
torques from the last time step, ball radius, and mass.

• The actions are normalized joint torque values.
• The sample time is Ts = 0 . 01s, and the simulation time is Tf = 10s.
• The simulation terminates when the ball falls off the plate.
• The reward rt at time step t is given by:

rt = rball + rplate + raction

rball = e−0 . 001 x2 + y2

rplate = − 0 . 1 ϕ2 + θ2 + ψ2

raction = − 0 . 05 τ1
2 + τ2

2

Here, rball is a reward for the ball moving closer to the center of the plate, rplate is a penalty for plate
orientation, and raction is a penalty for control effort. ϕ, θ, and ψ are the respective roll, pitch, and
yaw angles of the plate in radians. τ1 and τ2 are the joint torques.

Create the observation and action specifications for the environment using continuous observation
and action spaces.

numObs = 22;  % Number of observations
numAct = 2;   % Number of actions

obsInfo = rlNumericSpec([numObs 1]);
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actInfo = rlNumericSpec([numAct 1]);
actInfo.LowerLimit = -1;
actInfo.UpperLimit = 1;

Create the Simulink environment interface using the observation and action specifications. For more
information on creating Simulink environments, see rlSimulinkEnv.

mdl = "rlKinovaBallBalance";
blk = mdl + "/RL Agent";
env = rlSimulinkEnv(mdl,blk,obsInfo,actInfo);

Specify a reset function for the environment using the ResetFcn parameter.

env.ResetFcn = @kinovaResetFcn;

This reset function (provided at the end of this example) randomly initializes the initial x and y
positions of the ball with respect to the center of the plate. For more robust training, you can also
randomize other parameters inside the reset function, such as the mass and radius of the ball.

Specify the sample time Ts and simulation time Tf.

Ts = 0.01;
Tf = 10;

Create Agent

The agent in this example is a soft actor-critic (SAC) agent. SAC agents have critics that approximate
the expectation of the value function given the states and actions and an actor that models a
stochastic policy. The agent selects an action based on this policy. For more information on SAC
agents, see “Soft Actor-Critic Agents” on page 3-55.

The SAC agent in this example uses two critics to learn the optimal Q-value function. Using two
critics helps avoid overfitting when learning the Q-function. To create the critics, first create a deep
neural network with two inputs (the observation and action) and one output. For more information on
creating deep neural networks for reinforcement learning agents, see “Create Policies and Value
Functions” on page 4-2.

% Set the random seed for reproducibility.
rng(0)

% Define the network layers.
cnet = [
    featureInputLayer(numObs,"Normalization","none","Name","observation")
    fullyConnectedLayer(128,"Name","fc1")
    concatenationLayer(1,2,"Name","concat")
    reluLayer("Name","relu1")
    fullyConnectedLayer(64,"Name","fc3")
    reluLayer("Name","relu2")
    fullyConnectedLayer(32,"Name","fc4")
    reluLayer("Name","relu3")
    fullyConnectedLayer(1,"Name","CriticOutput")];
actionPath = [
    featureInputLayer(numAct,"Normalization","none","Name","action")
    fullyConnectedLayer(128,"Name","fc2")];

% Connect the layers.
criticNetwork = layerGraph(cnet);
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criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = connectLayers(criticNetwork,"fc2","concat/in2");

View the critic neural network.

plot(criticNetwork)

When using two critics, a SAC agent requires them to have different initial parameters. Create and
initialize two dlnetwork objects.

criticdlnet = dlnetwork(criticNetwork,'Initialize',false);
criticdlnet1 = initialize(criticdlnet);
criticdlnet2 = initialize(criticdlnet);

Create the critic functions using rlQValueFunction.

critic1 = rlQValueFunction(criticdlnet1,obsInfo,actInfo, ...
    "ObservationInputNames","observation");
critic2 = rlQValueFunction(criticdlnet2,obsInfo,actInfo, ...
    "ObservationInputNames","observation");

The actor function in a SAC agent is stochastic actor with a continuous action space, which you define
as an rlContinuousGaussianActor object. Create a deep neural network to model the actor
policy.

% Create the actor network layers.
anet = [
    featureInputLayer(numObs,"Normalization","none","Name","observation")
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    fullyConnectedLayer(128,"Name","fc1")
    reluLayer("Name","relu1")
    fullyConnectedLayer(64,"Name","fc2")
    reluLayer("Name","relu2")];
meanPath = [
    fullyConnectedLayer(32,"Name","meanFC")
    reluLayer("Name","relu3")
    fullyConnectedLayer(numAct,"Name","mean")];
stdPath = [
    fullyConnectedLayer(numAct,"Name","stdFC")
    reluLayer("Name","relu4")
    softplusLayer("Name","std")];

% Connect the layers.
actorNetwork = layerGraph(anet);
actorNetwork = addLayers(actorNetwork,meanPath);
actorNetwork = addLayers(actorNetwork,stdPath);
actorNetwork = connectLayers(actorNetwork,"relu2","meanFC/in");
actorNetwork = connectLayers(actorNetwork,"relu2","stdFC/in");

View the actor neural network.

plot(actorNetwork)

Create the actor function using rlContinuousGaussianActor.

actordlnet = dlnetwork(actorNetwork);
actor = rlContinuousGaussianActor(actordlnet, obsInfo, actInfo, ...
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    "ObservationInputNames","observation", ...
    "ActionMeanOutputNames","mean", ...
    "ActionStandardDeviationOutputNames","std");

The SAC agent in this example trains from an experience buffer of maximum capacity 1e6 by
randomly selecting mini-batches of size 128. The discount factor of 0.99 is close to 1 and therefore
favors long term reward with respect to a smaller value. For a full list of SAC hyperparameters and
their descriptions, see rlSACAgentOptions.

Specify the agent hyperparameters for training.

agentOpts = rlSACAgentOptions( ...
    "SampleTime",Ts, ...
    "TargetSmoothFactor",1e-3, ...    
    "ExperienceBufferLength",1e6, ...
    "MiniBatchSize",128, ...
    "NumWarmStartSteps",1000, ...
    "DiscountFactor",0.99);

For this example the actor and critic neural networks are updated using the Adam algorithm with a
learn rate of 1e-4 and gradient threshold of 1. Specify the optimizer parameters.

agentOpts.ActorOptimizerOptions.Algorithm = "adam";
agentOpts.ActorOptimizerOptions.LearnRate = 1e-4;
agentOpts.ActorOptimizerOptions.GradientThreshold = 1;

for ct = 1:2
    agentOpts.CriticOptimizerOptions(ct).Algorithm = "adam";
    agentOpts.CriticOptimizerOptions(ct).LearnRate = 1e-4;
    agentOpts.CriticOptimizerOptions(ct).GradientThreshold = 1;
end

Create the SAC agent.

agent = rlSACAgent(actor,[critic1,critic2],agentOpts);

Train Agent

To train the agent, first specify the training options using rlTrainingOptions. For this example,
use the following options:

• Run each training for at most 5000 episodes, with each episode lasting at most floor(Tf/Ts)
time steps.

• Stop training when the agent receives an average cumulative reward greater than 675 over 100
consecutive episodes.

• To speed up training set the UseParallel option to true. Doing so is optional and requires
Parallel Computing Toolbox™ software.

trainOpts = rlTrainingOptions(...
    "MaxEpisodes", 5000, ...
    "MaxStepsPerEpisode", floor(Tf/Ts), ...
    "ScoreAveragingWindowLength", 100, ...
    "Plots", "training-progress", ...
    "StopTrainingCriteria", "AverageReward", ...
    "StopTrainingValue", 675, ...
    "UseParallel", false);
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For parallel training, specify a list of supporting files. These files are required to model the Kinova
robot in the parallel workers when the CAD geometry rendering option is selected.

if trainOpts.UseParallel
    trainOpts.ParallelizationOptions.AttachedFiles = [pwd,filesep] + ...
        ["bracelet_with_vision_link.STL";
        "half_arm_2_link.STL";
        "end_effector_link.STL";
        "shoulder_link.STL";
        "base_link.STL";
        "forearm_link.STL";
        "spherical_wrist_1_link.STL";
        "bracelet_no_vision_link.STL";
        "half_arm_1_link.STL";
        "spherical_wrist_2_link.STL"];
end

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
    stats = train(agent,env,trainOpts);
else
    load("kinovaBallBalanceAgent.mat")       
end

A snapshot of training progress is shown in the following figure. You can expect different results due
to randomness in the training process.
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Simulate Trained Agent

To validate the trained agent, run the Simulink model.

Define an arbitrary initial position for the ball with respect to the plate center. To view the agent
performance in different situations, change this to other locations on the plate.

ball.x0 = 0.10;
ball.y0 = -0.10;

Create a Simulink.SimulationInput object and set the initial ball position.

in = Simulink.SimulationInput(mdl);
in = setVariable(in,"ball",ball);

Optionally, you can attach an animation function.

in = setPostSimFcn(in,@animatedPath);

Simulate the model.

out = sim(in);
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View the trajectory of the ball using the Ball Position scope block.
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Environment Reset Function

function in = kinovaResetFcn(in)
    % Ball parameters
    ball.radius = 0.02;     % m
    ball.mass   = 0.0027;   % kg
    ball.shell  = 0.0002;   % m
    
    % Calculate ball moment of inertia.
    ball.moi = calcMOI(ball.radius,ball.shell,ball.mass);
    
    % Initial conditions. +z is vertically upward.
    % Randomize the x and y distances within the plate.
    ball.x0  = -0.125 + 0.25*rand;  % m, initial x distance from plate center
    ball.y0  = -0.125 + 0.25*rand;  % m, initial y distance from plate center
    ball.z0  = ball.radius;         % m, initial z height from plate surface
    
    ball.dx0 = 0;   % m/s, ball initial x velocity
    ball.dy0 = 0;   % m/s, ball initial y velocity
    ball.dz0 = 0;   % m/s, ball initial z velocity
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    % Contact friction parameters
    ball.staticfriction     = 0.5;
    ball.dynamicfriction    = 0.3; 
    ball.criticalvelocity   = 1e-3;
    
    % Convert coefficient of restitution to spring-damper parameters.
    coeff_restitution = 0.89;
    [k, c, w] = cor2SpringDamperParams(coeff_restitution,ball.mass);
    ball.stiffness = k;
    ball.damping = c;
    ball.transitionwidth = w;
    
    in = setVariable(in,"ball",ball);
    
    % Randomize joint angles within a range of +/- 5 deg from the 
    % starting positions of the joints.
    R6_q0 = deg2rad(-65) + deg2rad(-5+10*rand);
    R7_q0 = deg2rad(-90) + deg2rad(-5+10*rand);
    in = setVariable(in,"R6_q0",R6_q0);
    in = setVariable(in,"R7_q0",R7_q0);
    
    % Compute approximate initial joint torques that hold the ball,
    % plate and arm at their initial congifuration
    g = 9.80665;
    wrist_torque_0 = ...
        (-1.882 + ball.x0 * ball.mass * g) * cos(deg2rad(-65) - R6_q0);
    hand_torque_0 = ...
        (0.0002349 - ball.y0 * ball.mass * g) * cos(deg2rad(-90) - R7_q0);
    U0 = [wrist_torque_0 hand_torque_0];
    in = setVariable(in,"U0",U0);

    % Animation
    in = setPostSimFcn(in, @animatedPath);
end
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Automatic Parking Valet with Unreal Engine Simulation
This example shows the design of a hybrid controller for an automatic searching and parking task.
You will learn how to combine adaptive model predictive control (MPC) with reinforcement learning
(RL) to perform a parking maneuver. The path of the vehicle is visualized using the Unreal Engine®
simulation environment.

The control objective is to park the vehicle in an empty spot after starting from an initial pose. The
control algorithm executes a series of maneuvers while sensing and avoiding obstacles in tight
spaces. It switches between an adaptive MPC controller and a reinforcement learning agent to
complete the parking maneuver. The adaptive MPC controller moves the vehicle at a constant speed
along a reference path while searching for an empty parking spot. When a spot is found, the
reinforcement learning agent takes over and executes a pretrained parking maneuver. Prior
knowledge of the environment (the parking lot) including the locations of the empty spots and parked
vehicles is available to both the controllers.

Parking Lot

The parking lot environment used in this example is a subsection of the Large Parking Lot
(Automated Driving Toolbox) scene. The parking lot is represented by the ParkingLotEnvironment
object, which stores information on the ego vehicle, empty parking spots, and static obstacles (parked
cars and boundaries). Each parking spot has a unique index number and an indicator light that is
either green (free) or red (occupied). Parked vehicles are represented in black while other boundaries
are outlined in green.
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Specify a sample time Ts (seconds) for the controllers and a simulation time Tf  (seconds).

Ts = 0.1;
Tf = 50;

Create a reference path for the ego vehicle using the createReferenceTrajectory helper
function included with this example. The reference path starts from the south-east corner of the
parking lot and ends in the west as displayed with the dashed pink line.

xRef = createReferenceTrajectory(Ts,Tf);

Create a ParkingLotEnvironment object with a free spot at index 32 and the specified reference
path xRef.

freeSpotIndex = 32;
map = ParkingLotEnvironment(freeSpotIndex,"Route",xRef);

Specify an initial pose X0, Y0, θ0  for the ego vehicle. The units of X0 and Y0 are meters and θ0 is in
radians.

egoInitialPose = [40 -55 pi/2];

Compute the target pose for the vehicle using the createTargetPose function. The target pose
corresponds to the location in freeSpotIdx.

egoTargetPose = createTargetPose(map,freeSpotIndex);

Sensor Modules

The parking algorithm uses geometric approximations of a camera and a lidar sensor to gather
information from the parking lot environment.
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Camera

In this example, the field of view of a camera mounted on the ego vehicle is represented by the area
shaded in green in the following figure. The camera has a field of view φ bounded by ±π/3 radians
and a maximum measurement depth dmax of 10 m. As the ego vehicle moves forward, the camera
module senses the parking spots within the field of view and determines whether a spot is free or
occupied. For simplicity, this action is implemented using geometrical relationships between the spot
locations and the current vehicle pose. A parking spot is within the camera range if di ≤ dmax and
φmin ≤ φi ≤ φmax, where di is the distance to the parking spot and φi is the angle to the parking spot.

Lidar

The lidar sensor in this example is modeled using radial line segments emerging from the geometric
center of the vehicle. Distances to obstacles are measured along these line segments. The maximum
measurable lidar distance along any line segment is 6 m. The reinforcement learning agent uses
these readings to determine the proximity of the ego vehicle to other vehicles in the environment.
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Auto Parking Valet Model

Load the auto parking valet parameters.

autoParkingValetParams3D

The parking valet model, including the controllers, ego vehicle, sensors, and parking lot, is
implemented in a Simulink model. Open the model.

mdl = "rlAutoParkingValet3D";
open_system(mdl)
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In this model:

• The vehicle dynamics are modeled in the Ego Vehicle Model subsystem. The dynamics is
represented by a single-track bicycle kinematics model with two input signals: vehicle speed v
(m/s) and steering angle δ (radians).

• The adaptive MPC and RL agent blocks are found in the MPC Tracking Controller and RL
Controller subsystems, respectively.

• Mode switching between the controllers is handled by the Vehicle Mode subsystem, which outputs
Search and Park signals. Initially, the vehicle is in search mode and the adaptive MPC controller
tracks the reference path. When a free spot is found, the Park signal activates the RL Agent to
perform the parking maneuver.
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• The Visualization Subsystem handles animation of the environment. Double-click this subsystem to
specify the visualization options.

To plot the environment in a figure, set the 2D Visualization parameter to On.

If you have Automated Driving Toolbox™ software installed, you can set the Unreal Engine
Visualization parameter to On to display the vehicle animation in the Unreal Engine environment.
Enabling the Unreal Engine simulation can degrade simulation performance. Therefore, set the
parameter to Off when training the agent.

Adaptive Model Predictive Controller Design

Create the adaptive MPC controller object for reference trajectory tracking using the
createMPCForParking script. For more information on adaptive MPC, see “Adaptive MPC” (Model
Predictive Control Toolbox).

createMPCForParking3D;

Reinforcement Learning Controller Design

To train the reinforcement learning agent, you must create an environment interface and an agent
object.

Create Environment

The environment for training is the region shaded in red in the following figure. Due to symmetry in
the parking lot, training within this region is sufficient for the policy to adjust to other regions after
coordinate transformations are applied to the observations. Constraining the training to this region
also significantly reduces training duration when compared to training over the entire parking lot
space.
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For this environment:

• The training region is a 13.625 m x 12.34 m space with the target spot at its horizontal center.
• The observations are the position errors Xe and Ye of the ego vehicle with respect to the target

pose, the sine and cosine of the true heading angle θ, and the lidar sensor readings.
• The vehicle speed during parking is a constant 2 m/s.
• The action signals are discrete steering angles that range between +/- π/4 radians in steps of

0.2618 radians or 15 degrees.
• The vehicle is considered parked if the errors with respect to target pose are within specified

tolerances of +/- 0.75 m (position) and +/-10 degrees (orientation).
• The episode terminates if the ego vehicle goes out of the bounds of the training region, collides

with an obstacle, or parks successfully.
• The reward rt provided at time t, is:

rt = 2e− 0 . 05Xe
2 + 0 . 04Ye

2
+ 0 . 5e−40θe

2
− 0 . 05δ2 + 100f t − 50gt

Here, Xe, Ye, and θe are the position and heading angle errors of the ego vehicle from the target pose,
while δ is the steering angle. f t (0 or 1) indicates whether the vehicle has parked and gt (0 or 1)
indicates if the vehicle has collided with an obstacle or left the training region at time t.

The coordinate transformations on vehicle pose X, Y, θ  observations for different parking spot
locations are as follows:

• Parking spots 1-14: X‾ = X, Y‾ = Y + 20 . 41, θ‾ = θ
• Parking spots 15-28: X‾ = 41− X, Y‾ = − 64 . 485− Y, θ‾ = θ− π
• Parking spots 29-37: no transformation
• Parking spots38-46: X‾ = 41− X, Y‾ = − 84 . 48− Y, θ‾ = θ− π

Create the observation and action specifications for the environment.

nObs = 16;
nAct = 1;
observationInfo = rlNumericSpec([nObs 1]);
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observationInfo.Name = "observations";
actionInfo = rlNumericSpec([nAct 1],"LowerLimit",-1,"UpperLimit",1);
actionInfo.Name = "actions";

Create the Simulink environment interface, specifying the path to the RL Agent block.

blk = mdl + "/Controller/RL Controller/RL Agent";
env = rlSimulinkEnv(mdl,blk,observationInfo,actionInfo);

Specify a reset function for training. The autoParkingValetResetFcn function resets the initial
pose of the ego vehicle to random values at the start of each episode.

env.ResetFcn = @autoParkingValetResetFcn3D;

For more information on creating Simulink environments, see rlSimulinkEnv.

Create Agent

The agent in this example is a twin-delayed deep deterministic policy gradient (TD3) agent. TD3
agents rely on actor and critic functions to learn the optimal policy. To learn more about TD3 agents,
see “Twin-Delayed Deep Deterministic Policy Gradient Agents” on page 3-33.

Set the random seed generator for reproducibility.

rng(0)

To create the critic function, first create a deep neural network with 16 inputs and one output. The
output of the critic network is the state-action value function for a taking a given action from a given
observation.

cnet = [
    featureInputLayer(nObs,"Normalization","none","Name","State")
    fullyConnectedLayer(128, "Name", "fc1")
    concatenationLayer(1,2,"Name","concat")
    reluLayer("Name","relu1")
    fullyConnectedLayer(128, "Name","fc3")
    reluLayer("Name","relu2")
    fullyConnectedLayer(1,"Name","CriticOutput")];
actionPath = [
    featureInputLayer(nAct,"Normalization","none","Name","Action")
    fullyConnectedLayer(128,"Name","fc2")];
criticNet = layerGraph(cnet);
criticNet = addLayers(criticNet, actionPath);
criticNet = connectLayers(criticNet,"fc2","concat/in2");

Create the Q-value function for the critics. For more information see rlQValueFunction.

criticdlnet = dlnetwork(criticNet);
critic1 = rlQValueFunction(criticNet,observationInfo,actionInfo,...
    "ObservationInputNames","State","ActionInputNames","Action");
critic2 = rlQValueFunction(criticNet,observationInfo,actionInfo,...
    "ObservationInputNames","State","ActionInputNames","Action");

Create the actor neural network. The output of the actor network is the steering angle.

anet = [featureInputLayer(nObs,"Normalization","none","Name","State")
    fullyConnectedLayer(128, "Name","actorFC1")
    reluLayer("Name","relu1")
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    fullyConnectedLayer(128,"Name","actorFC2")
    reluLayer("Name","relu2")
    fullyConnectedLayer(nAct,"Name","Action")
    tanhLayer("Name","tanh1")];
actorNet = layerGraph(anet);

Create the actor function for the TD3 agent. For more information see
rlContinuousDeterministicActor.

actordlnet = dlnetwork(actorNet);
actor = rlContinuousDeterministicActor(actordlnet,observationInfo,actionInfo,...
    "ObservationInputNames","State");

Specify the agent options and create the TD3 agent. For more information on TD3 agent options, see
rlTD3AgentOptions.

agentOpts = rlTD3AgentOptions("SampleTime",Ts, ...
    "DiscountFactor",0.99, ...
    "ExperienceBufferLength",1e6, ...
    "MiniBatchSize",128);

Set the noise options for exploration.

agentOpts.ExplorationModel.StandardDeviation = 0.1;
agentOpts.ExplorationModel.StandardDeviationDecayRate = 1e-4;
agentOpts.ExplorationModel.StandardDeviationMin = 0.01;

Set the optimizer parameters. For this example, set the actor and critic learn rates to 1e-3 and 2e-3,
respectively. Set a gradient threshold factor of 1 to limit the gradients during training.

% Actor optimizer options
agentOpts.ActorOptimizerOptions.LearnRate = 1e-3;
agentOpts.ActorOptimizerOptions.GradientThreshold = 1;
agentOpts.ActorOptimizerOptions.L2RegularizationFactor = 1e-3;
% Critic optimizer options
agentOpts.CriticOptimizerOptions(1).LearnRate = 2e-3;
agentOpts.CriticOptimizerOptions(2).LearnRate = 2e-3;
agentOpts.CriticOptimizerOptions(1).GradientThreshold = 1;
agentOpts.CriticOptimizerOptions(2).GradientThreshold = 1;

Create the agent.

agent = rlTD3Agent(actor,[critic1 critic2], agentOpts);

Train Agent

To train the agent first specify the training options.

The agent is trained for a maximum of 10000 episodes with each episode lasting a maximum of 200
time steps. The training terminates when the maximum number of episodes is reached or the average
reward over 200 episodes reaches the value of 120 or more. Specify the options for training using the
rlTrainingOptions function.

trainOpts = rlTrainingOptions(...
    "MaxEpisodes",10000,...
    "MaxStepsPerEpisode",200,...
    "ScoreAveragingWindowLength",200,...
    "Plots","training-progress",...
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    "StopTrainingCriteria","AverageReward",...
    "StopTrainingValue",120);

Train the agent using the train function. Fully training this agent is a computationally intensive
process that may take several hours to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set doTraining to
true.

doTraining = false;
if doTraining
    trainingResult = train(agent,env,trainOpts);
else
    load("rlAutoParkingValetAgent.mat","agent");
end

Simulate Parking Task

To Validate the trained agent, simulate the model and observe the parking maneuver.

sim(mdl);
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The vehicle tracks the reference path using the MPC controller before switching to the RL controller
when the target spot is detected. The vehicle then completes the parking maneuver.

To view the trajectory, open the Ego Vehicle Pose scope.

open_system(mdl + "/Ego Vehicle Model/Ego Vehicle Pose")
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Unreal Engine Simulation

Turn on the Unreal Engine visualization by opening the Visualization block and setting the Unreal
Engine Visualization parameter to On. Initializing the Unreal Engine simulation environment can
take a few seconds..

Park the vehicle in a different spot.

freeSpotIndex = 20;
sim(mdl)
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Generate Reward Function from a Model Predictive Controller
for a Servomotor

This example shows how to automatically generate a reward function from cost and constraint
specifications defined in a model predictive controller object. You then use the generated reward
function to train a reinforcement learning agent.

Introduction

You can use the generateRewardFunction to generate a reward function for reinforcement
learning, starting from cost and constraints specified in a model predictive controller. The resulting
reward signal is a sum of costs (as defined by an objective function) and constraint violation penalties
depending on the current state of the environment.

This example is based on the“DC Servomotor with Constraint on Unmeasured Output” (Model
Predictive Control Toolbox) example, in which you design a model predictive controller for a DC
servomechanism under voltage and shaft torque constraints. Here, you will convert the cost and
constraints specifications defined in the mpc object into a reward function and use it to train an agent
to control the servomotor.

Open the Simulink model for this example which is based on the above MPC example but has been
modified for reinforcement learning.

open_system('rl_motor')

Create Model Predictive Controller

Create the open-loop dynamic model of the motor, defined in plant and the maximum admissible
torque tau using an helper function.
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[plant,tau] = mpcmotormodel;

Specify input and output signal types for the MPC controller. The shaft angular position, is measured
as first output. The second output, torque, is unmeasurable.

plant = setmpcsignals(plant,'MV',1,'MO',1,'UO',2);

Specify constraints on the manipulated variable, and define a scale factor.

MV = struct('Min',-220,'Max',220,'ScaleFactor',440);

Impose torque constraints during the first three prediction steps, and specify scale factor for both
shaft position and torque.

OV = struct('Min',{-Inf, [-tau;-tau;-tau;-Inf]},...
            'Max',{Inf, [tau;tau;tau;Inf]},...
            'ScaleFactor',{2*pi, 2*tau});

Specify weights for the quadratic cost function to achieve angular position tracking. Set to zero the
weight for the torque, thereby allowing it to float within its constraint.

Weights = struct('MV',0,'MVRate',0.1,'OV',[0.1 0]);

Create an MPC controller for the plant model with a sample time of 0.1 s, a prediction horizon 10
steps, and a control horizon of 2 steps, using the previously defined structures for the weights,
manipulated variables, and output variables.

mpcobj = mpc(plant,0.1,10,2,Weights,MV,OV);

Display the controller specifications.

mpcobj

 
MPC object (created on 27-Feb-2022 02:59:07):
---------------------------------------------
Sampling time:      0.1 (seconds)
Prediction Horizon: 10
Control Horizon:    2

Plant Model:        
                                      --------------
      1  manipulated variable(s)   -->|  4 states  |
                                      |            |-->  1 measured output(s)
      0  measured disturbance(s)   -->|  1 inputs  |
                                      |            |-->  1 unmeasured output(s)
      0  unmeasured disturbance(s) -->|  2 outputs |
                                      --------------
Indices:
  (input vector)    Manipulated variables: [1 ]
  (output vector)        Measured outputs: [1 ]
                       Unmeasured outputs: [2 ]

Disturbance and Noise Models:
        Output disturbance model: default (type "getoutdist(mpcobj)" for details)
         Measurement noise model: default (unity gain after scaling)

Weights:
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        ManipulatedVariables: 0
    ManipulatedVariablesRate: 0.1000
             OutputVariables: [0.1000 0]
                         ECR: 10000

State Estimation:  Default Kalman Filter (type "getEstimator(mpcobj)" for details)

Constraints:
 -220 <= MV1 (V) <= 220, MV1/rate (V) is unconstrained,       MO1 (rad) is unconstrained
                                                        -78.54 <= UO1 (Nm)(t+1) <= 78.54
                                                        -78.54 <= UO1 (Nm)(t+2) <= 78.54
                                                        -78.54 <= UO1 (Nm)(t+3) <= 78.54
                                                          UO1 (Nm)(t+4) is unconstrained

The controller operates on a plant with 4 states, 1 input (voltage) and 2 output signals (angle and
torque) and has the following specifications:

• The cost function weights for the manipulated variable, manipulated variable rate and output
variables are 0, 0.1 and [0.1 0] respectively.

• The manipulated variable is constrained between -220V and 220V.
• The manipulated variable rate is unconstrained.
• The first output variable (angle) is unconstrained but the second (torque) is constrained between

-78.54 Nm and 78.54 Nm in the first three prediction time steps and unconstrained in the fourth
step.

Note that for reinforcement learning only the constraints specification from the first prediction time
step will be used since the reward is computed for a single time step.

Generate the Reward Function

Generate the reward function code from specifications in the mpc object using
generateRewardFunction. The code is displayed in the MATLAB Editor.

generateRewardFunction(mpcobj)

The generated reward function is a starting point for reward design. You can modify the function with
different penalty function choices and tune the weights. For this example, make the following change
to the generated code:

• Scale the original cost weights Qy, Qmv and Qmvrate by a factor of 100.
• The default exterior penalty function method is step. Change the method to quadratic.

After you make changes, the cost and penalty specifications should be as follows:

Qy      = [10 0];
Qmv     = 0;
Qmvrate = 10;
Py      = Wy      * exteriorPenalty(y,ymin,ymax,'quadratic');
Pmv     = Wmv     * exteriorPenalty(mv,mvmin,mvmax,'quadratic');
Pmvrate = Wmvrate * exteriorPenalty(mv-lastmv,mvratemin,mvratemax,'quadratic');

For this example, the modified code has been saved in the MATLAB function file
rewardFunctionMpc.m. Display the generated reward function.

type rewardFunctionMpc.m
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function reward = rewardFunctionMpc(y,refy,mv,refmv,lastmv)
% REWARDFUNCTIONMPC generates rewards from MPC specifications.
%
% Description of input arguments:
%
% y : Output variable from plant at step k+1
% refy : Reference output variable at step k+1
% mv : Manipulated variable at step k
% refmv : Reference manipulated variable at step k
% lastmv : Manipulated variable at step k-1
%
% Limitations (MPC and NLMPC):
%     - Reward computed based on first step in prediction horizon.
%       Therefore, signal previewing and control horizon settings are ignored.
%     - Online cost and constraint update is not supported.
%     - Custom cost and constraint specifications are not considered.
%     - Time varying cost weights and constraints are not supported.
%     - Mixed constraint specifications are not considered (for the MPC case).

% Reinforcement Learning Toolbox
% 02-Jun-2021 16:05:41

%#codegen

%% Specifications from MPC object
% Standard linear bounds as specified in 'States', 'OutputVariables', and
% 'ManipulatedVariables' properties
ymin = [-Inf -78.5398163397448];
ymax = [Inf 78.5398163397448];
mvmin = -220;
mvmax = 220;
mvratemin = -Inf;
mvratemax = Inf;

% Scale factors as specified in 'States', 'OutputVariables', and
% 'ManipulatedVariables' properties
Sy  = [6.28318530717959 157.07963267949];
Smv = 440;

% Standard cost weights as specified in 'Weights' property
Qy      = [0.1 0];
Qmv     = 0;
Qmvrate = 0.1;

%% Compute cost
dy      = (refy(:)-y(:)) ./ Sy';
dmv     = (refmv(:)-mv(:)) ./ Smv';
dmvrate = (mv(:)-lastmv(:)) ./ Smv';
Jy      = dy'      * diag(Qy.^2)      * dy;
Jmv     = dmv'     * diag(Qmv.^2)     * dmv;
Jmvrate = dmvrate' * diag(Qmvrate.^2) * dmvrate;
Cost    = Jy + Jmv + Jmvrate;

%% Penalty function weight (specify nonnegative)
Wy = [1 1];
Wmv = 10;
Wmvrate = 10;
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%% Compute penalty
% Penalty is computed for violation of linear bound constraints.
%
% To compute exterior bound penalty, use the exteriorPenalty function and
% specify the penalty method as 'step' or 'quadratic'.
%
% Alternatively, use the hyperbolicPenalty or barrierPenalty function for
% computing hyperbolic and barrier penalties.
%
% For more information, see help for these functions.
%
% Set Pmv value to 0 if the RL agent action specification has
% appropriate 'LowerLimit' and 'UpperLimit' values.
Py      = Wy      * exteriorPenalty(y,ymin,ymax,'step');
Pmv     = Wmv     * exteriorPenalty(mv,mvmin,mvmax,'step');
Pmvrate = Wmvrate * exteriorPenalty(mv-lastmv,mvratemin,mvratemax,'step');
Penalty = Py + Pmv + Pmvrate;

%% Compute reward
reward = -(Cost + Penalty);
end

To integrate this reward function, open the MATLAB Function block in the Simulink model.

open_system('rl_motor/Reward Function')

Append the function with the following line of code and save the model.

r = rewardFunctionMpc(y,refy,mv,refmv,lastmv);

The MATLAB Function block will now execute rewardFunctionMpc.m during simulation.

For this example, the MATLAB Function block has already been modified and saved.

Create a Reinforcement Learning Environment

The environment dynamics are modeled in the Servomechanism subsystem. For this environment,

• The observations are the reference and actual output variables (angle and torque) from the last 8
time steps.

• The action is the voltage V applied to the servomotor.
• The sample time is Ts = 0 . 1s.
• The total simulation time is Tf = 20s.

Specify the total simulation time and sample time.

Tf = 20;
Ts = 0.1;

Create observation and action specifications for the environment.

numObs = 32;
numAct = 1;
oinfo = rlNumericSpec([numObs 1]);
ainfo = rlNumericSpec([numAct 1],'LowerLimit',-220,'UpperLimit',220);

Create the reinforcement learning environment using the rlSimulinkEnv function.
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env = rlSimulinkEnv('rl_motor','rl_motor/RL Agent',oinfo,ainfo);

Create a Reinforcement Learning Agent

Fix the random seed for reproducibility.

rng(0)

The agent in this example is a Twin Delayed Deep Deterministic Policy Gradient (TD3) agent.

Create two critic representations.

% Critic
cnet = [
    featureInputLayer(numObs,'Normalization','none','Name', 'State')
    fullyConnectedLayer(128, 'Name', 'fc1')
    concatenationLayer(1,2,'Name','concat')
    reluLayer('Name','relu1')
    fullyConnectedLayer(64, 'Name', 'fc3')
    reluLayer('Name','relu2')
    fullyConnectedLayer(1, 'Name', 'CriticOutput')]; 
actionPath = [
    featureInputLayer(numAct,'Normalization','none', 'Name', 'Action')
    fullyConnectedLayer(8, 'Name', 'fc2')];
criticNetwork = layerGraph(cnet);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = connectLayers(criticNetwork,'fc2','concat/in2');
criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
critic1 = rlQValueRepresentation(criticNetwork,oinfo,ainfo,...
    'Observation',{'State'},'Action',{'Action'},criticOptions);
critic2 = rlQValueRepresentation(criticNetwork,oinfo,ainfo,...
    'Observation',{'State'},'Action',{'Action'},criticOptions);

Create an actor representation.

actorNetwork = [
    featureInputLayer(numObs,'Normalization','none','Name','State')
    fullyConnectedLayer(128, 'Name','actorFC1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(64, 'Name','actorFC2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(numAct,'Name','Action')];
actorOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlDeterministicActorRepresentation(actorNetwork,oinfo,ainfo,...
    'Observation',{'State'},'Action',{'Action'},actorOptions);

Specify the agent options using rlTD3AgentOptions. The agent trains from an experience buffer of
maximum capacity 1e6 by randomly selecting mini-batches of size 256. The discount factor of 0.995
favors long-term rewards.

agentOpts = rlTD3AgentOptions("SampleTime",Ts, ...
    "DiscountFactor", 0.995, ...
    "ExperienceBufferLength",1e6, ...
    "MiniBatchSize",256);

The exploration model in this TD3 agent is Gaussian. The noise model adds a uniform random value
to the action during training. Set the standard deviation of the noise to 100. The standard deviation
decays at the rate of 1e-5 every agent step until the minimum value of 0.005.
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agentOpts.ExplorationModel.StandardDeviationMin = 0.005;
agentOpts.ExplorationModel.StandardDeviation = 100;
agentOpts.ExplorationModel.StandardDeviationDecayRate = 1e-5;

Create the TD3 agent using the actor and critic representations. For more information on TD3 agents,
see rlTD3Agent.

agent = rlTD3Agent(actor,[critic1,critic2],agentOpts);

Train the Agent

To train the agent, first specify the training options using rlTrainingOptions. For this example,
use the following options:

• Run each training for at most 2000 episodes, with each episode lasting at most ceil(Tf/Ts)
time steps.

• Stop the training when the agent receives an average cumulative reward greater than -2 over 20
consecutive episodes. At this point, the agent can track the reference signal.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',2000, ...
    'MaxStepsPerEpisode',ceil(Tf/Ts), ...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-2,...
    'ScoreAveragingWindowLength',20);

Train the agent using the train function. Training this agent is a computationally intensive process
that may take several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set doTraining to
true.

doTraining = false;
if doTraining
    trainingStats = train(agent,env,trainOpts);
else
    load('rlDCServomotorTD3Agent.mat')
end

A snapshot of the training progress is shown in the following figure. You can expect different results
due to inherent randomness in the training process.
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Validate Controller Response

To validate the performance of the trained agent, simulate the model and view the response in the
Scope blocks. The reinforcement learning agent is able to track the reference angle while satisfying
the constraints on torque and voltage.

sim('rl_motor');
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Close the model.

close_system('rl_motor')

Copyright 2021 The MathWorks, Inc..
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Generate Reward Function from a Model Verification Block for
a Water Tank System

This example shows how to automatically generate a reward function from performance requirement
defined in a Simulink® Design Optimization™ model verification block. You then use the generated
reward function to train a reinforcement learning agent.

Introduction

You can use the generateRewardFunction to generate a reward function for reinforcement
learning, starting from performance constraints specified in a Simulink Design Optimization model
verification block. The resulting reward signal is a sum of weighted penalties on constraint violations
by the current state of the environment.

In this example, you will convert the cost and constraint specifications defined in a Check Step
Response Characteristics block for a water tank system into a reward function. You then use the
reward function and use it to train an agent to control the water tank.

Specify parameters for this example.

% Watertank parameters
a = 2;
b = 5;
A = 20;

% Initial and final height
h0 = 1;
hf = 2;

% Simulation and sample times
Tf = 10;
Ts = 0.1;

The original model for this example is the “watertank Simulink Model” (Simulink Control Design).

Open the model.

open_system('rlWatertankStepInput')
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The model in this example has been modified for reinforcement learning. The goal is to control the
level of the water in the tank using a reinforcement learning agent, while satisfying the response
characteristics defined in the Check Step Response Characteristics block. Open the block to view
the desired step response specifications.

blk = 'rlWatertankStepInput/WaterLevelStepResponse';
open_system(blk)
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Generate a Reward Function

Generate the reward function code from specifications in the WaterLevelStepResponse block using
generateRewardFunction. The code is displayed in the MATLAB Editor.

generateRewardFunction(blk)

The generated reward function is a starting point for reward design. You may modify the function by
choosing different penalty functions and tuning the penalty weights. For this example, make the
following change to the generated code:

• The default penalty weight is 1. Set weight to 10.
• The default exterior penalty function method is step. Change the method to quadratic.

After you make changes, the weight and penalty specifications should be as follows:

Weight = 10;
Penalty = sum(exteriorPenalty(x,Block1_xmin,Block1_xmax,'quadratic'));

For this example, the modified code has been saved in the MATLAB function file
rewardFunctionVfb.m. Display the generated reward function.

type rewardFunctionVfb.m

function reward = rewardFunctionVfb(x,t)
% REWARDFUNCTION generates rewards from Simulink block specifications.
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%
% x : Input of watertank_stepinput_rl/WaterLevelStepResponse
% t : Simulation time (s)

% Reinforcement Learning Toolbox
% 26-Apr-2021 13:05:16

%#codegen

%% Specifications from watertank_stepinput_rl/WaterLevelStepResponse
Block1_InitialValue = 1;
Block1_FinalValue = 2;
Block1_StepTime = 0;
Block1_StepRange = Block1_FinalValue - Block1_InitialValue;
Block1_MinRise = Block1_InitialValue + Block1_StepRange * 80/100;
Block1_MaxSettling = Block1_InitialValue + Block1_StepRange * (1+2/100);
Block1_MinSettling = Block1_InitialValue + Block1_StepRange * (1-2/100);
Block1_MaxOvershoot = Block1_InitialValue + Block1_StepRange * (1+10/100);
Block1_MinUndershoot = Block1_InitialValue - Block1_StepRange * 5/100;

if t >= Block1_StepTime
    if Block1_InitialValue <= Block1_FinalValue
        Block1_UpperBoundTimes = [0,5; 5,max(5+1,t+1)];
        Block1_UpperBoundAmplitudes = [Block1_MaxOvershoot,Block1_MaxOvershoot; Block1_MaxSettling,Block1_MaxSettling];
        Block1_LowerBoundTimes = [0,2; 2,5; 5,max(5+1,t+1)];
        Block1_LowerBoundAmplitudes = [Block1_MinUndershoot,Block1_MinUndershoot; Block1_MinRise,Block1_MinRise; Block1_MinSettling,Block1_MinSettling];
    else
        Block1_UpperBoundTimes = [0,2; 2,5; 5,max(5+1,t+1)];
        Block1_UpperBoundAmplitudes = [Block1_MinUndershoot,Block1_MinUndershoot; Block1_MinRise,Block1_MinRise; Block1_MinSettling,Block1_MinSettling];
        Block1_LowerBoundTimes = [0,5; 5,max(5+1,t+1)];
        Block1_LowerBoundAmplitudes = [Block1_MaxOvershoot,Block1_MaxOvershoot; Block1_MaxSettling,Block1_MaxSettling];
    end

    Block1_xmax = zeros(1,size(Block1_UpperBoundTimes,1));
    for idx = 1:numel(Block1_xmax)
        tseg = Block1_UpperBoundTimes(idx,:);
        xseg = Block1_UpperBoundAmplitudes(idx,:);
        Block1_xmax(idx) = interp1(tseg,xseg,t,'linear',NaN);
    end
    if all(isnan(Block1_xmax))
        Block1_xmax = Inf;
    else
        Block1_xmax = max(Block1_xmax,[],'omitnan');
    end

    Block1_xmin = zeros(1,size(Block1_LowerBoundTimes,1));
    for idx = 1:numel(Block1_xmin)
        tseg = Block1_LowerBoundTimes(idx,:);
        xseg = Block1_LowerBoundAmplitudes(idx,:);
        Block1_xmin(idx) = interp1(tseg,xseg,t,'linear',NaN);
    end
    if all(isnan(Block1_xmin))
        Block1_xmin = -Inf;
    else
        Block1_xmin = max(Block1_xmin,[],'omitnan');
    end
else
    Block1_xmin = -Inf;
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    Block1_xmax = Inf;
end

%% Penalty function weight (specify nonnegative)
Weight = 10;

%% Compute penalty
% Penalty is computed for violation of linear bound constraints.
%
% To compute exterior bound penalty, use the exteriorPenalty function and
% specify the penalty method as 'step' or 'quadratic'.
%
% Alternaltely, use the hyperbolicPenalty or barrierPenalty function for
% computing hyperbolic and barrier penalties.
%
% For more information, see help for these functions.
Penalty = sum(exteriorPenalty(x,Block1_xmin,Block1_xmax,'quadratic'));

%% Compute reward
reward = -Weight * Penalty;
end

To integrate this reward function in the water tank model, open the MATLAB Function block under
the Reward Subsystem.

open_system('rlWatertankStepInput/Reward/Reward Function')

Append the function with the following line of code and save the model.

r = rewardFunctionVfb(x,t);

The MATLAB Function block will now execute rewardFunctionVfb.m for computing rewards.

For this example, the MATLAB Function block has already been modified and saved.

Create a Reinforcement Learning Environment

The environment dynamics are modeled in the Water-Tank Subsystem. For this environment,

• The observations are the reference height ref from the last 5 time steps, and the height error is
err = ref - H.

• The action is the voltage V applied to the pump.
• The sample time Ts is 0.1 s.

Create observation and action specifications for the environment.

numObs = 6;
numAct = 1;
oinfo = rlNumericSpec([numObs 1]);
ainfo = rlNumericSpec([numAct 1]);

Create the reinforcement learning environment using the rlSimulinkEnv function.

env = rlSimulinkEnv('rlWatertankStepInput','rlWatertankStepInput/RL Agent',oinfo,ainfo);

Create a Reinforcement Learning Agent

Fix the random seed for reproducibility.
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rng(100)

The agent in this example is a Twin Delayed Deep Deterministic Policy Gradient (TD3) agent.

Create two critic representations.

% Critic
cnet = [
    featureInputLayer(numObs,'Normalization','none','Name', 'State')
    fullyConnectedLayer(128, 'Name', 'fc1')
    concatenationLayer(1,2,'Name','concat')
    reluLayer('Name','relu1')
    fullyConnectedLayer(128, 'Name', 'fc3')
    reluLayer('Name','relu2')
    fullyConnectedLayer(1, 'Name', 'CriticOutput')];
actionPath = [
    featureInputLayer(numAct,'Normalization','none', 'Name', 'Action')
    fullyConnectedLayer(8, 'Name', 'fc2')];
criticNetwork = layerGraph(cnet);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = connectLayers(criticNetwork,'fc2','concat/in2');
criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
critic1 = rlQValueRepresentation(criticNetwork,oinfo,ainfo,...
    'Observation',{'State'},'Action',{'Action'},criticOptions);
critic2 = rlQValueRepresentation(criticNetwork,oinfo,ainfo,...
    'Observation',{'State'},'Action',{'Action'},criticOptions);

Create an actor representation.

actorNetwork = [featureInputLayer(numObs,'Normalization','none','Name','State')
    fullyConnectedLayer(128, 'Name','actorFC1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(128, 'Name','actorFC2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(numAct,'Name','Action')
    ];
actorOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlDeterministicActorRepresentation(actorNetwork,oinfo,ainfo,...
    'Observation',{'State'},'Action',{'Action'},actorOptions);

Specify the agent options using rlTD3AgentOptions. The agent trains from an experience buffer of
maximum capacity 1e6 by randomly selecting mini-batches of size 256. The discount factor of 0.99
favors long-term rewards.

agentOpts = rlTD3AgentOptions("SampleTime",Ts, ...
    "DiscountFactor",0.99, ...
    "ExperienceBufferLength",1e6, ...
    "MiniBatchSize",256);

The exploration model in this TD3 agent is Gaussian. The noise model adds a uniform random value
to the action during training. Set the standard deviation of the noise to 0.5. The standard deviation
decays at the rate of 1e-5 every agent step until the minimum value of 0.

agentOpts.ExplorationModel.StandardDeviation = 0.5;
agentOpts.ExplorationModel.StandardDeviationDecayRate = 1e-5;
agentOpts.ExplorationModel.StandardDeviationMin = 0;

Create the TD3 agent using the actor and critic representations. For more information on TD3 agents,
see rlTD3Agent.
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agent = rlTD3Agent(actor,[critic1,critic2],agentOpts);

Train the Agent

To train the agent, first specify the training options using rlTrainingOptions. For this example,
use the following options:

• Run training for at most 100 episodes, with each episode lasting at most ceil(Tf/Ts) time
steps, where the total simulation time Tf is 10 s.

• Stop the training when the agent receives an average cumulative reward greater than -5 over 20
consecutive episodes. At this point, the agent can track the reference height.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',100, ...
    'MaxStepsPerEpisode',ceil(Tf/Ts), ...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-5,...
    'ScoreAveragingWindowLength',20);

Train the agent using the train function. Training this agent is a computationally intensive process
that may take several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set doTraining to
true.

doTraining = false;
if doTraining
    trainingStats = train(agent,env,trainOpts);
else
    load('rlWatertankTD3Agent.mat')
end

A snapshot of the training progress is shown in the following figure. You can expect different results
due to inherent randomness in the training process.
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Validate Closed Loop Response

Simulate the model to view the closed loop step response. The reinforcement learning agent is able to
track the reference height while satisfying the step response constraints.

sim('rlWatertankStepInput');
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Close the model.

close_system('rlWatertankStepInput')
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Train TD3 Agent for PMSM Control
This example demonstrates speed control of a permanent magnet synchronous motor (PMSM) using a
twin delayed deep deterministic policy gradient (TD3) agent.

The goal of this example is to show that you can use reinforcement learning as an alternative to linear
controllers, such as PID controllers, in speed control of PMSM systems. Outside their regions of
linearity, linear controllers often do not produce good tracking performance. In such cases,
reinforcement learning provides a nonlinear control alternative.

Load the parameters for this example.

sim_data

             model: 'Maxon-645106'
                sn: '2295588'
                 p: 7
                Rs: 0.2930
                Ld: 8.7678e-05
                Lq: 7.7724e-05
                Ke: 5.7835
                 J: 8.3500e-05
                 B: 7.0095e-05
           I_rated: 7.2600
          QEPSlits: 4096
            N_base: 3477
             N_max: 4300
            FluxPM: 0.0046
           T_rated: 0.3472
    PositionOffset: 0.1650

               model: 'BoostXL-DRV8305'
                  sn: 'INV_XXXX'
                V_dc: 24
              I_trip: 10
              Rds_on: 0.0020
              Rshunt: 0.0070
       CtSensAOffset: 2295
       CtSensBOffset: 2286
             ADCGain: 1
         EnableLogic: 1
        invertingAmp: 1
          ISenseVref: 3.3000
    ISenseVoltPerAmp: 0.0700
           ISenseMax: 21.4286
             R_board: 0.0043

                 model: 'LAUNCHXL-F28379D'
                    sn: '123456'
         CPU_frequency: 200000000
         PWM_frequency: 5000
    PWM_Counter_Period: 20000
              ADC_Vref: 3
          ADC_MaxCount: 4095
         SCI_baud_rate: 12000000

    V_base: 13.8564
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    I_base: 21.4286
    N_base: 3477
    T_base: 1.0249
    P_base: 445.3845

Open the Simulink model.

mdl = 'mcb_pmsm_foc_sim_RL';
open_system(mdl)

In a linear control version of this example, you can use PI controllers in both the speed and current
control loops. An outer-loop PI controller can control the speed while two inner-loop PI controllers
control the d-axis and q-axis currents. The overall goal is to track the reference speed in the
Speed_Ref signal. This example uses a reinforcement learning agent to control the currents in the
inner control loop while a PI controller controls the outer loop.

Create Environment Interface

The environment in this example consists of the PMSM system, excluding the inner-loop current
controller, which is the reinforcement learning agent. To view the interface between the
reinforcement learning agent and the environment, open the Closed Loop Control subsystem.

open_system('mcb_pmsm_foc_sim_RL/Current Control/Control_System/Closed Loop Control')
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The Reinforcement Learning subsystem contains an RL Agent block, the creation of the observation
vector, and the reward calculation.

For this environment:

• The observations are the outer-loop reference speed Speed_ref, speed feedback Speed_fb, d-
axis and q-axis currents and errors (id, iq, iderror and iqerror), and the error integrals.

• The actions from the agent are the voltages vd_rl and vq_rl.
• The sample time of the agent is 2e-4 seconds. The inner-loop control occurs at a different sample

time than the outer loop control.
• The simulation runs for 5000 time steps unless it is terminated early when the iqref signal is

saturated at 1.
• The reward at each time step is:

rt = − Q1 * iderror
2 + Q2 * iqerror

2 + R *∑
j

u j
t − 1

2 − 100d

Here, Q1 = Q2 = 5, and R = 0 . 1 are constants, iderror is the d-axis current error, iqerror is the q-axis
current error, u j

t − 1 are the actions from the previous time step, and d is a flag that is equal to 1
when the simulation is terminated early.

Create the observation and action specifications for the environment. For information on creating
continuous specifications, see rlNumericSpec.

% Create observation specifications.
numObservations = 8;
observationInfo = rlNumericSpec([numObservations 1],"DataType",dataType);
observationInfo.Name = 'observations';
observationInfo.Description = 'Information on error and reference signal';

% Create action specifications.

5 Train and Validate Agents

5-266



numActions = 2;
actionInfo = rlNumericSpec([numActions 1],"DataType",dataType); 
actionInfo.Name = 'vqdRef';

Create the Simulink environment interface using the observation and action specifications. For more
information on creating Simulink environments, see rlSimulinkEnv.

agentblk = 'mcb_pmsm_foc_sim_RL/Current Control/Control_System/Closed Loop Control/Reinforcement Learning/RL Agent';
env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

Provide a reset function for this environment using the ResetFcn parameter. At the beginning of
each training episode, the resetPMSM function randomly initializes the final value of the reference
speed in the SpeedRef block to 695.4 rpm (0.2 pu), 1390.8 rpm (0.4 pu), 2086.2 rpm (0.6 pu), or
2781.6 rpm (0.8 pu).

env.ResetFcn = @resetPMSM;

Create Agent

The agent used in this example is a twin-delayed deep deterministic policy gradient (TD3) agent. A
TD3 agent approximates the long-term reward given the observations and actions using two critics.
For more information on TD3 agents, see “Twin-Delayed Deep Deterministic Policy Gradient Agents”
on page 3-33.

To create the critics, first create a deep neural network with two inputs (the observation and action)
and one output. For more information on creating a value function representation, see “Create
Policies and Value Functions” on page 4-2.

rng(0)  % fix the random seed

statePath = [featureInputLayer(numObservations,'Normalization','none','Name','State')
    fullyConnectedLayer(64,'Name','fc1')];
actionPath = [featureInputLayer(numActions, 'Normalization', 'none', 'Name','Action')
    fullyConnectedLayer(64, 'Name','fc2')];
commonPath = [additionLayer(2,'Name','add')
    reluLayer('Name','relu2')
    fullyConnectedLayer(32, 'Name','fc3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(16, 'Name','fc4')
    fullyConnectedLayer(1, 'Name','CriticOutput')];
criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'fc1','add/in1');
criticNetwork = connectLayers(criticNetwork,'fc2','add/in2');

Create the critic representation using the specified neural network and options. You must also specify
the action and observation specification for the critic. For more information, see
rlQValueRepresentation.

criticOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1);
critic1 = rlQValueRepresentation(criticNetwork,observationInfo,actionInfo,...
    'Observation',{'State'},'Action',{'Action'},criticOptions);
critic2 = rlQValueRepresentation(criticNetwork,observationInfo,actionInfo,...
    'Observation',{'State'},'Action',{'Action'},criticOptions);
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A TD3 agent decides which action to take given the observations using an actor representation. To
create the actor, first create a deep neural network and construct the actor in a similar manner to the
critic. For more information, see rlDeterministicActorRepresentation.

actorNetwork = [featureInputLayer(numObservations,'Normalization','none','Name','State')
    fullyConnectedLayer(64, 'Name','actorFC1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(32, 'Name','actorFC2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(numActions,'Name','Action')
    tanhLayer('Name','tanh1')];
actorOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1,'L2RegularizationFactor',0.001);
actor = rlDeterministicActorRepresentation(actorNetwork,observationInfo,actionInfo,...
    'Observation',{'State'},'Action',{'tanh1'},actorOptions);

To create the TD3 agent, first specify the agent options using an rlTD3AgentOptions object. The
agent trains from an experience buffer of maximum capacity 2e6 by randomly selecting mini-batches
of size 512. Use a discount factor of 0.995 to favor long-term rewards. TD3 agents maintain time-
delayed copies of the actor and critics known as the target actor and critics. Configure the targets to
update every 10 agent steps during training with a smoothing factor of 0.005.

Ts_agent = Ts;
agentOptions = rlTD3AgentOptions("SampleTime",Ts_agent, ...
    "DiscountFactor", 0.995, ...
    "ExperienceBufferLength",2e6, ...
    "MiniBatchSize",512, ...
    "NumStepsToLookAhead",1, ...
    "TargetSmoothFactor",0.005, ...
    "TargetUpdateFrequency",10);

During training, the agent explores the action space using a Gaussian action noise model. Set the
noise variance and decay rate using the ExplorationModel property. The noise variance decays at
the rate of 2e-4, which favors exploration towards the beginning of training and exploitation in later
stages. For more information on the noise model, see rlTD3AgentOptions.

agentOptions.ExplorationModel.Variance = 0.05;
agentOptions.ExplorationModel.VarianceDecayRate = 2e-4;
agentOptions.ExplorationModel.VarianceMin = 0.001;

The agent also uses a Gaussian action noise model for smoothing the target policy updates. Specify
the variance and decay rate for this model using the TargetPolicySmoothModel property.

agentOptions.TargetPolicySmoothModel.Variance = 0.1;
agentOptions.TargetPolicySmoothModel.VarianceDecayRate = 1e-4;

Create the agent using the specified actor, critics, and options.

agent = rlTD3Agent(actor,[critic1,critic2],agentOptions);

Train Agent

To train the agent, first specify the training options using rlTrainingOptions. For this example,
use the following options.

• Run each training for at most 1000 episodes, with each episode lasting at most ceil(T/
Ts_agent) time steps.
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• Stop training when the agent receives an average cumulative reward greater than -190 over 100
consecutive episodes. At this point, the agent can track the reference speeds.

T = 1.0;
maxepisodes = 1000;
maxsteps = ceil(T/Ts_agent); 
trainingOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes, ...
    'MaxStepsPerEpisode',maxsteps, ...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-190,... 
    'ScoreAveragingWindowLength',100);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
    trainingStats = train(agent,env,trainingOpts);
else
    load('rlPMSMAgent.mat')       
end

A snapshot of the training progress is shown in the following figure. You can expect different results
due to randomness in the training process.
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Simulate Agent

To validate the performance of the trained agent, simulate the model and view the closed-loop
performance through the Speed Tracking Scope block.

sim(mdl);

You can also simulate the model at different reference speeds. Set the reference speed in the
SpeedRef block to a different value between 0.2 and 1.0 per-unit and simulate the model again.

set_param('mcb_pmsm_foc_sim_RL/SpeedRef','After','0.6')
sim(mdl);

The following figure shows an example of closed-loop tracking performance. In this simulation, the
reference speed steps through values of 695.4 rpm (0.2 per-unit) and 1738.5 rpm (0.5 pu). The PI and
reinforcement learning controllers track the reference signal changes within 0.5 seconds.

Although the agent was trained to track the reference speed of 0.2 per-unit and not 0.5 per-unit, it
was able to generalize well.

The following figure shows the corresponding current tracking performance. The agent was able to
track the id and iq current references with steady-state error less than 2%.
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See Also
rlTD3Agent | train

More About
• “Train Reinforcement Learning Agents” on page 5-3
• “Twin-Delayed Deep Deterministic Policy Gradient Agents” on page 3-33
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Water Distribution System Scheduling Using Reinforcement
Learning

This example shows how to learn an optimal pump scheduling policy for a water distribution system
using reinforcement learning (RL).

Water Distribution System

The following figure shows a water distribution system.

Here:

• QSupply is the amount of water supplied to the water tank from a reservoir.
• QDemand is the amount of water flowing out of the tank to satisfy usage demand.

The objective of the reinforcement learning agent is to schedule the number of pumps running to
both minimize the energy usage of the system and satisfy the usage demand (h > 0). The dynamics of
the tank system are governed by the following equation.

Adh
dt = QSupply t − QDemand t

Here, A = 40 m2 and hmax = 7m. The demand over a 24 hour period is a function of time given as

QDemand t = μ t + η t
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where μ t is the expected demand and η t  represents the demand uncertainty, which is sampled from
a uniform random distribution.

The supply is determined by the number of pumps running, a ∈ 0, 1, 2, 3 according to following
mapping.

QSupply t = Q a =

0 a = 0
164 a = 1
279 a = 2
344 a = 3

cm
h

To simplify the problem, power consumption is defined as the number of pumps running, a.

The following function is the reward for this environment. To avoid overflowing or emptying the tank,
an additional cost is added if the water height is close to the maximum or minimum water levels, hmax
or hmin, respectively.

r h, a = − 10 h ≥ hmax− 0 . 1 − 10 h ≤ 0 . 1 − a

Generate Demand Profile

To generate and a water demand profile based on the number of days considered, use the
generateWaterDemand function defined at the end of this example.

num_days = 4; % Number of days
[WaterDemand,T_max] = generateWaterDemand(num_days);

View the demand profile.

plot(WaterDemand)
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Open and Configure Model

Open the distribution system Simulink model.

mdl = "watertankscheduling";
open_system(mdl)
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In addition to the reinforcement learning agent, a simple baseline controller is defined in the Control
law MATLAB Function block. This controller activates a certain number of pumps depending on the
water level.

Specify the initial water height.

h0 = 3; % m

Specify the model parameters.

SampleTime = 0.2;
H_max = 7; % Max tank height (m)
A_tank = 40; % Area of tank (m^2)

Create Environment Interface for RL Agent

To create an environment interface for the Simulink model, first define the action and observation
specifications, actInfo and obsInfo, respectively. The agent action is the selected number of
pumps. The agent observation is the water height, which is measured as a continuous-time signal.
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actInfo = rlFiniteSetSpec([0,1,2,3]);
obsInfo = rlNumericSpec([1,1]);

Create the environment interface.

env = rlSimulinkEnv(mdl,mdl+"/RL Agent",obsInfo,actInfo);

Specify a custom reset function, which is defined at the end of this example, that randomizes the
initial water height and the water demand. Doing so allows the agent to be trained on different initial
water levels and water demand functions for each episode.

env.ResetFcn = @(in)localResetFcn(in);

Create DQN Agent

A DQN agent approximates the long-term reward, given observations and actions, using a critic Q-
value function representation. To create the critic, first create a deep neural network. For more
information on creating a deep neural network value function representation, see “Create Policies
and Value Functions” on page 4-2.

% Fix the random generator seed for reproducibility.
rng(0);

Create a deep neural network for the critic. For this example, use a non-recurrent neural network. To
use a recurrent neural network, set useLSTM to true.

useLSTM = false;
if useLSTM
    layers = [
        sequenceInputLayer(obsInfo.Dimension(1),"Name","state","Normalization","none")
        fullyConnectedLayer(32,"Name","fc_1")
        reluLayer("Name","relu_body1")
        lstmLayer(32,"Name","lstm")
        fullyConnectedLayer(32,"Name","fc_3")
        reluLayer("Name","relu_body3")
        fullyConnectedLayer(numel(actInfo.Elements),"Name","output")];
else
    layers = [
        featureInputLayer(obsInfo.Dimension(1),"Name","state","Normalization","none")
        fullyConnectedLayer(32,"Name","fc_1")
        reluLayer("Name","relu_body1")
        fullyConnectedLayer(32,"Name","fc_2")
        reluLayer("Name","relu_body2")
        fullyConnectedLayer(32,"Name","fc_3")
        reluLayer("Name","relu_body3")
        fullyConnectedLayer(numel(actInfo.Elements),"Name","output")];
end

Specify options for creating a critic representation.

criticOpts = rlRepresentationOptions('LearnRate',0.001,'GradientThreshold',1);

Create the critic representation using the defined deep neural network and options.

critic = rlQValueRepresentation(layerGraph(layers),obsInfo,actInfo,...
    'Observation',{'state'},criticOpts);
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Create DQN Agent

To create an agent, first specify agent options. If you are using an LSTM network, set the sequence
length to 20.

opt = rlDQNAgentOptions('SampleTime',SampleTime); 
if useLSTM
    opt.SequenceLength = 20;
else
    opt.SequenceLength = 1;
end
opt.DiscountFactor = 0.995;
opt.ExperienceBufferLength = 1e6;
opt.EpsilonGreedyExploration.EpsilonDecay = 1e-5;
opt.EpsilonGreedyExploration.EpsilonMin = .02;

Create the agent using the defined options and critic representation.

agent = rlDQNAgent(critic,opt);    

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run training for 1000 episodes, with each episode lasting at ceil(T_max/Ts) time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option)

Specify the options for training using an rlTrainingOptions object.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',1000, ...
    'MaxStepsPerEpisode',ceil(T_max/SampleTime), ...
    'Verbose',false, ...
    'Plots','training-progress',...
    'StopTrainingCriteria','EpisodeCount',...
    'StopTrainingValue',1000,...
    'ScoreAveragingWindowLength',100);

While you don't do it for this example, you can save agents during the training process. For example,
the following options save every agent with a reward value greater than or equal to -42.

Save agents using SaveAgentCriteria if necessary
trainOpts.SaveAgentCriteria = 'EpisodeReward';
trainOpts.SaveAgentValue = -42;

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
    % Train the agent.
    % Connect the RL Agent block by toggling the manual switch block
    set_param(mdl+"/Manual Switch",'sw','0');
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
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    load('SimulinkWaterDistributionDQN.mat','agent')
end

The following figure shows the training progress.

Simulate DQN Agent

To validate the performance of the trained agent, simulate it in the water-tank environment. For more
information on agent simulation, see rlSimulationOptions and sim.

To simulate the agent performance, connect the RL Agent block by toggling the manual switch block.

set_param(mdl+"/Manual Switch",'sw','0');

Set the maximum number of steps for each simulation and the number of simulations. For this
example, run 30 simulations. The environment reset function sets a different initial water height and
water demand are different in each simulation.

NumSimulations = 30;
simOptions = rlSimulationOptions('MaxSteps',T_max/SampleTime,...
    'NumSimulations', NumSimulations);

To compare the agent with the baseline controller under the same conditions, reset the initial random
seed used in the environment reset function.

env.ResetFcn("Reset seed");

Simulate the agent against the environment.
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experienceDQN = sim(env,agent,simOptions);

Simulate Baseline Controller

To compare DQN agent with the baseline controller, you must simulate the baseline controller using
the same simulation options and initial random seed for the reset function.

Enable the baseline controller.

set_param(mdl+"/Manual Switch",'sw','1');

To compare the agent with the baseline controller under the same conditions, reset the random seed
used in the environment reset function.

env.ResetFcn("Reset seed");

Simulate the baseline controller against the environment.

experienceBaseline = sim(env,agent,simOptions);

Compare DQN Agent with Baseline Controller

Initialize cumulative reward result vectors for both the agent and baseline controller.

resultVectorDQN = zeros(NumSimulations, 1);
resultVectorBaseline = zeros(NumSimulations,1);

Calculate cumulative rewards for both the agent and the baseline controller.

for ct = 1:NumSimulations
    resultVectorDQN(ct) = sum(experienceDQN(ct).Reward);
    resultVectorBaseline(ct) = sum(experienceBaseline(ct).Reward);
end

Plot the cumulative rewards.

plot([resultVectorDQN resultVectorBaseline],'o')
set(gca,'xtick',1:NumSimulations)
xlabel("Simulation number")
ylabel('Cumulative Reward')
legend('DQN','Baseline','Location','NorthEastOutside')
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The cumulative reward obtained by the agent is consistently around –40. This value is much greater
than the average reward obtained by the baseline controller. Therefore, the DQN agent consistently
outperforms the baseline controller in terms of energy savings.

Local Functions

Water Demand Function

function [WaterDemand,T_max] = generateWaterDemand(num_days)

    t = 0:(num_days*24)-1; % hr
    T_max = t(end);

    Demand_mean = [28, 28, 28, 45, 55, 110, 280, 450, 310, 170, 160, 145, 130, ...
        150, 165, 155, 170, 265, 360, 240, 120, 83, 45, 28]'; % m^3/hr

    Demand = repmat(Demand_mean,1,num_days);
    Demand = Demand(:);

    % Add noise to demand
    a = -25; % m^3/hr
    b = 25; % m^3/hr
    Demand_noise = a + (b-a).*rand(numel(Demand),1);

    WaterDemand = timeseries(Demand + Demand_noise,t);
    WaterDemand.Name = "Water Demand";
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    WaterDemand.TimeInfo.Units = 'hours';
end

Reset Function

function in = localResetFcn(in)

    % Use a persistent random seed value to evaluate the agent and the baseline
    % controller under the same conditions.
    persistent randomSeed
    if isempty(randomSeed)
        randomSeed = 0;
    end
    if strcmp(in,"Reset seed")
        randomSeed = 0;
        return
    end    
    randomSeed = randomSeed + 1;
    rng(randomSeed)
    
    % Randomize water demand.
    num_days = 4;
    H_max = 7;
    [WaterDemand,~] = generateWaterDemand(num_days);
    assignin('base','WaterDemand',WaterDemand)

    % Randomize initial height.
    h0 = 3*randn;
    while h0 <= 0 || h0 >= H_max
        h0 = 3*randn;
    end
    blk = 'watertankscheduling/Water Tank System/Initial Water Height';

    in = setBlockParameter(in,blk,'Value',num2str(h0));

end

See Also
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Imitate MPC Controller for Lane Keeping Assist
This example shows how to train, validate, and test a deep neural network that imitates the behavior
of a model predictive controller for an automotive lane keeping assist system. In the example, you
also compare the behavior of the deep neural network with that of the original controller.

Model predictive control (MPC) solves a constrained quadratic-programming (QP) optimization
problem in real time based on the current state of the plant. Because MPC solves its optimization
problem in an open-loop fashion, you can potentially replace the controller with a deep neural
network. Evaluating a deep neural network is more computationally efficient than solving a QP
problem in real time.

If the training of the network sufficiently traverses the state-space for the application, you can create
a reasonable approximation of the controller behavior. You can then deploy the network for your
control application. You can also use the network as a warm starting point for training the actor
network of a reinforcement learning agent. For an example, see “Train DDPG Agent with Pretrained
Actor Network” on page 5-290.

Design MPC Controller

Design an MPC controller for lane keeping assist. To do so, first create a dynamic model for the
vehicle.

[sys,Vx] = createModelForMPCImLKA;

Create and design the MPC controller object mpcobj. Also, create an mpcstate object for setting the
initial controller state. For details on the controller design, type edit createMPCobjImLKA.

[mpcobj,initialState] = createMPCobjImLKA(sys);

For more information on designing model predictive controllers for lane keeping assist applications,
see “Lane Keeping Assist System Using Model Predictive Control” (Model Predictive Control Toolbox)
and “Lane Keeping Assist with Lane Detection” (Model Predictive Control Toolbox).

Prepare Input Data

Load the input data from InputDataFileImLKA.mat. The columns of the data set follow:

1 Lateral velocity Vy

2 Yaw angle rate r
3 Lateral deviation e1

4 Relative yaw angle e2

5 Previous steering angle (control variable) u
6 Measured disturbance (road yaw rate: longitudinal velocity * curvature (ρ))
7 Cost function value
8 MPC iterations
9 Steering angle computed by MPC controller: u*

The data in InputDataFileImLKA.mat was created by computing the MPC control action for
randomly generated states, previous control actions, and measured disturbances. To generate your
own training data, use the collectDataImLKA function.
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Load the input data.

dataStruct = load('InputDataFileImLKA.mat');
data = dataStruct.Data;

Divide the input data into training, validation, and testing data. First, determine the number of
validation data rows based on a given percentage.

totalRows = size(data,1);
validationSplitPercent = 0.1;
numValidationDataRows = floor(validationSplitPercent*totalRows);

Determine the number of test data rows based on a given percentage.

testSplitPercent = 0.05;
numTestDataRows = floor(testSplitPercent*totalRows);

Randomly extract validation and testing data from the input data set. To do so, first randomly extract
enough rows for both data sets.

randomIdx = randperm(totalRows,numValidationDataRows + numTestDataRows);
randomData = data(randomIdx,:);

Divide the random data into validation and testing data.

validationData = randomData(1:numValidationDataRows,:);
testData = randomData(numValidationDataRows + 1:end,:);

Extract the remaining rows as training data.

trainDataIdx = setdiff(1:totalRows,randomIdx);
trainData = data(trainDataIdx,:);

Randomize the training data.

numTrainDataRows = size(trainData,1);
shuffleIdx = randperm(numTrainDataRows);
shuffledTrainData = trainData(shuffleIdx,:);

Reshape the training and validation data into 4-D matrices for use with trainNetwork.

numObservations = 6; 
numActions = 1;

trainInput = shuffledTrainData(:,1:6);
trainOutput = shuffledTrainData(:,9);

validationInput = validationData(:,1:6);
validationOutput = validationData(:,9);
validationCellArray = {validationInput,validationOutput};

Reshape the testing data for use with predict.

testDataInput = testData(:,1:6);
testDataOutput = testData(:,9);

Create Deep Neural Network

The deep neural network architecture uses the following layers.
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• imageInputLayer is the input layer of the neural network.
• fullyConnectedLayer multiplies the input by a weight matrix and then adds a bias vector.
• reluLayer is the activation function of the neural network.
• tanhLayer constrains the value to the range to [-1,1].
• scalingLayer scales the value to the range to [-1.04,1.04], this constrains the steering angle to

the range [-60,60].
• regressionLayer defines the loss function of the neural network.

Create the deep neural network that will imitate the MPC controller after training.

imitateMPCNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','InputLayer')    
    fullyConnectedLayer(45,'Name','Fc1')
    reluLayer('Name','Relu1')
    fullyConnectedLayer(45,'Name','Fc2')
    reluLayer('Name','Relu2')    
    fullyConnectedLayer(45,'Name','Fc3')
    reluLayer('Name','Relu3')     
    fullyConnectedLayer(numActions,'Name','OutputLayer')
    tanhLayer('Name','Tanh1')    
    scalingLayer('Name','Scale1','Scale',1.04)    
    regressionLayer('Name','RegressionOutput')
];

Plot the network.

plot(layerGraph(imitateMPCNetwork))
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Train Deep Neural Network

Specify training options.

options = trainingOptions('adam', ...
    'Verbose',false, ...
    'Plots','training-progress', ...
    'Shuffle','every-epoch', ...
    'MaxEpochs', 30, ...
    'MiniBatchSize',512, ...
    'ValidationData',validationCellArray, ...
    'InitialLearnRate',1e-3, ...
    'GradientThresholdMethod','absolute-value', ...
    'ExecutionEnvironment','cpu', ...
    'GradientThreshold',10, ...
    'Epsilon',1e-8);

Train the deep neural network. To view detailed training information in the Command Window, set
the Verbose training option to true.

imitateMPCNetObj = trainNetwork(trainInput,trainOutput,imitateMPCNetwork,options);

 Imitate MPC Controller for Lane Keeping Assist

5-285



Training of the deep neural network stops after the final iteration.

The training and validation loss are nearly the same for each mini-batch, which indicates that the
trained network does not overfit.

Test Trained Network

Check that the trained deep neural network returns steering angles similar to the MPC controller
control actions given the test input data. Compute the network output using the predict function.

predictedTestDataOutput = predict(imitateMPCNetObj,testDataInput);

Calculate the root mean squared error (RMSE) between the network output and the testing data.

testRMSE = sqrt(mean((testDataOutput - predictedTestDataOutput).^2));
fprintf('Test Data RMSE = %d\n', testRMSE);

Test Data RMSE = 3.253846e-02

The small RMSE value indicates that the network outputs closely reproduce the MPC controller
outputs.

Compare Trained Network with MPC Controller

To compare the performance of the MPC controller and the trained deep neural network, run closed-
loop simulations using the vehicle plant model.

Generate random initial conditions for the vehicle that are not part of the original input data set, with
values selected from the following ranges:

1 Lateral velocity Vy — Range (-2,2) m/s
2 Yaw angle rate r — Range (-1.04,1.04) rad/s
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3 Lateral deviation e1 — Range (-1,1) m
4 Relative yaw angle e2 — Range (-0.8,0.8) rad
5 Last steering angle (control variable) u — Range (-1.04,1.04) rad
6 Measured disturbance (road yaw rate, defined as longitudinal velocity * curvature (ρ)) — Range

(-0.01,0.01) with a minimum road radius of 100 m

rng(5e7)
[x0,u0,rho] = generateRandomDataImLKA(data);

Set the initial plant state and control action in the mpcstate object.

initialState.Plant = x0;
initialState.LastMove = u0;

Extract the sample time from the MPC controller. Also, set the number of simulation steps.

Ts = mpcobj.Ts;
Tsteps = 30;     

Obtain the A and B state-space matrices for the vehicle model.

A = sys.A;
B = sys.B;

Initialize the state and input trajectories for the MPC controller simulation.

xHistoryMPC = repmat(x0',Tsteps+1,1);
uHistoryMPC = repmat(u0',Tsteps,1);

Run a closed-loop simulation of the MPC controller and the plant using the mpcmove function.

for k = 1:Tsteps
    % Obtain plant output measurements, which correspond to the plant outputs.
    xk = xHistoryMPC(k,:)';
    % Compute the next cotnrol action using the MPC controller.
    uk = mpcmove(mpcobj,initialState,xk,zeros(1,4),Vx*rho);
    % Store the control action.
    uHistoryMPC(k,:) = uk;
    % Update the state using the control action.
    xHistoryMPC(k+1,:) = (A*xk + B*[uk;Vx*rho])';
end

Initialize the state and input trajectories for the deep neural network simulation.

xHistoryDNN = repmat(x0',Tsteps+1,1);
uHistoryDNN = repmat(u0',Tsteps,1);
lastMV = u0;

Run a closed-loop simulation of the trained network and the plant. The neuralnetLKAmove function
computes the deep neural network output using the predict function.

for k = 1:Tsteps
    % Obtain plant output measurements, which correspond to the plant outputs.
    xk = xHistoryDNN(k,:)';
    % Predict the next move using the trained deep neural network.
    uk = neuralnetLKAmove(imitateMPCNetObj,xk,lastMV,rho);
    % Store the control action and update the last MV for the next step.
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    uHistoryDNN(k,:) = uk;
    lastMV = uk;
    % Update the state using the control action.
    xHistoryDNN(k+1,:) = (A*xk + B*[uk;Vx*rho])';
end

Plot the results to compare the MPC controller and trained deep neural network (DNN) trajectories.

plotValidationResultsImLKA(Ts,xHistoryDNN,uHistoryDNN,xHistoryMPC,uHistoryMPC);
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The deep neural network successfully imitates the behavior of the MPC controller. The vehicle state
and control action trajectories for the controller and the deep neural network closely align.

See Also
trainNetwork | predict | mpcmove

More About
• “Lane Keeping Assist System Using Model Predictive Control” (Model Predictive Control

Toolbox)
• “Lane Keeping Assist with Lane Detection” (Model Predictive Control Toolbox)
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Train DDPG Agent with Pretrained Actor Network
This example shows how to train a deep deterministic policy gradient (DDPG) agent for lane keeping
assist (LKA) in Simulink. To make training more efficient, the actor of the DDPG agent is initialized
with a deep neural network that was previously trained using supervised learning. This actor trained
is trained in the “Imitate MPC Controller for Lane Keeping Assist” on page 5-282 example.

For more information on DDPG agents, see Deep Deterministic Policy Gradient Agents.

Simulink Model

The training goal for the lane-keeping application is to keep the ego vehicle traveling along the
centerline of the a lane by adjusting the front steering angle. This example uses the same ego vehicle
dynamics and sensor dynamics as the “Train DQN Agent for Lane Keeping Assist” on page 5-166
example.

m = 1575;   % total vehicle mass (kg)
Iz = 2875;  % yaw moment of inertia (mNs^2)
lf = 1.2;   % longitudinal distance from center of gravity to front tires (m)
lr = 1.6;   % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
Vx = 15;    % longitudinal velocity (m/s)

Define the sample time, Ts, and simulation duration, T, in seconds.

Ts = 0.1;
T = 15;

The output of the LKA system is the front steering angle of the ego vehicle. Considering the physical
limitations of the ego vehicle, constrain its steering angle to the range [-60,60] degrees. Specify the
constraints in radians.

u_min = -1.04;
u_max = 1.04;

Define the curvature of the road as a constant 0.001(m−1).

rho = 0.001;

Set initial values for the lateral deviation (e1_initial) and the relative yaw angle (e2_initial).
During training, these initial conditions are set to random values for each training episode.

e1_initial = 0.2;
e2_initial = -0.1;

Open the model.

mdl = 'rlActorLKAMdl';
open_system(mdl)
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Define the path to the RL Agent block within the model.

agentblk = [mdl '/RL Agent'];

Create Environment

Create a reinforcement learning environment interface for the ego vehicle. To do so, first define the
observation and action specifications. These observations and actions are the same as the features for
supervised learning used in “Imitate MPC Controller for Lane Keeping Assist” on page 5-282.

The six observations for the environment are the lateral velocity vy, yaw rate ψ̇, lateral deviation e1,
relative yaw angle e2, steering angle at previous step u0, and curvature ρ.

observationInfo = rlNumericSpec([6 1],...
    'LowerLimit',-inf*ones(6,1),'UpperLimit',inf*ones(6,1));
observationInfo.Name = 'observations';

The action for the environment is the front steering angle. Specify the steering angle constraints
when creating the action specification object.

actionInfo = rlNumericSpec([1 1],'LowerLimit',u_min,'UpperLimit',u_max);
actionInfo.Name = 'steering';

In the model, the Signal Processing for LKA block creates the observation vector signal, computes the
reward function, and calculates the stop signal.

The reward rt, provided at every time step t, is as follows, where u is the control input from the
previous time step t − 1.

rt = − (10e1
2 + 5e2

2 + 2u2 + 5ė1
2 + 5ė2

2)

The simulation stops when |e1 | > 1.

Create the reinforcement learning environment.
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env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

To define the initial condition for lateral deviation and relative yaw angle, specify an environment
reset function using an anonymous function handle. The localResetFcn function, which is defined
at the end of the example, sets the initial lateral deviation and relative yaw angle to random values.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward given observations and actions using a critic value
function representation. To create the critic, first create a deep neural network with two inputs, the
state and action, and one output. For more information on creating a deep neural network value
function representation, see “Create Policies and Value Functions” on page 4-2.

[critic,criticOptions] = createLaneKeepingCritic(observationInfo,actionInfo);

A DDPG agent decides which action to take given observations using an actor representation. To
create the actor, first create a deep neural network with one input (the observation) and one output
(the action).

[actor,actorOptions] = createLaneKeepingActor(observationInfo,actionInfo);

These initial actor and critic networks have random initial parameter values.

To create the DDPG agent, first specify the DDPG agent options.

agentOptions = rlDDPGAgentOptions(...
    'SampleTime',Ts,...
    'ActorOptimizerOptions',actorOptions,...
    'CriticOptimizerOptions',criticOptions,...
    'ExperienceBufferLength',1e6);
agentOptions.NoiseOptions.Variance = 0.3;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Create the DDPG agent using the specified actor representation, critic representation, and agent
options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

As a baseline, train the agent with an actor that has random initial parameters. To train the agent,
first specify the training options. For this example, use the following options.

• Run training for at most 50000 episodes, with each episode lasting at most 150 time steps.
• Display the training progress in the Episode Manager dialog box.
• Stop training when the episode reward reaches –1.
• Save a copy of the agent for each episode where the cumulative reward is greater than –2.5.

For more information, see rlTrainingOptions.

maxepisodes = 50000;
maxsteps = T/Ts;
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trainingOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','EpisodeReward',...
    'StopTrainingValue',-1,...
    'SaveAgentCriteria','EpisodeReward',...
    'SaveAgentValue',-2.5);

Train the agent using the train function. Training is a computationally intensive process that takes
several hours to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOpts);
else
    % Load pretrained agent for the example.
    load('ddpgFromScratch.mat');
end
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Train Agent with Pretrained Actor

You can set the actor network of your agent to a deep neural network that has been previously
trained. For this example, use the deep neural network from the “Imitate MPC Controller for Lane
Keeping Assist” on page 5-282 example. This network was trained to imitate a model predictive
controller using supervised learning.

Load the pretrained actor network.

load('imitateMPCNetActorObj.mat','imitateMPCNetObj'); 

Create an actor representation using the pretrained actor.

supervisedActor = rlContinuousDeterministicActor(imitateMPCNetObj,observationInfo,actionInfo);

Check that the network used by supervisedActor is the same one that was loaded. To do so,
evaluate both the network and the agent using the same random input observation.

testData = rand(6,1);

Evaluate the deep neural network.

predictImNN = predict(imitateMPCNetObj,testData');

Evaluate the actor.

evaluateRLRep = getAction(supervisedActor,{testData});

Compare the results.

error = evaluateRLRep{:} - predictImNN

error = single
    2.2352e-08

Create a DDPG agent using the pretrained actor.

agent = rlDDPGAgent(supervisedActor,critic,agentOptions);

Reduce the maximum number of training episodes and train the agent using the train function. To
save time while running this example, load a pretrained agent by setting doTraining to false. To
train the agent yourself, set doTraining to true.

trainingOpts.MaxEpisodes = 5000;
doTraining = false;

if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOpts);
else
    % Load pretrained agent for the example.
    load('ddpgFromPretrained.mat');
end
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By using the pretrained actor network, the training of the DDPG agent is more efficient. Both the
total training time and the total number of training steps have improved by approximately 20%. Also,
the number of episodes for the training to approach the neighborhood of the optimal result decreased
from approximately 4500 to approximately 3500.

Simulate DDPG Agent

To validate the performance of the trained agent, uncomment the following two lines and simulate it
within the environment. For more information on agent simulation, see rlSimulationOptions and
sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To check the performance of the trained agent within the Simulink model, simulate the model using
the previously defined initial conditions (e1_initial = 0.2 and e2_initial = -0.1).

sim(mdl)

As shown below, the lateral error (middle plot) and relative yaw angle (bottom plot) are both driven to
zero. The vehicle starts with a lateral deviation from the centerline (0.2 m) and a nonzero yaw angle
error (-0.1 rad). The lane-keeping controller makes the ego vehicle travel along the centerline after
around two seconds. The steering angle (top plot) shows that the controller reaches steady state after
about two seconds.
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Close the Simulink model without saving any changes.

bdclose(mdl)

Local Functions

function in = localResetFcn(in)
% Set random value for lateral deviation.
in = setVariable(in,'e1_initial', 0.5*(-1+2*rand));

% Set random value for relative yaw angle.
in = setVariable(in,'e2_initial', 0.1*(-1+2*rand));
end

See Also
train | rlDDPGAgent

More About
• “Imitate MPC Controller for Lane Keeping Assist” on page 5-282
• “Train DQN Agent for Lane Keeping Assist” on page 5-166
• “Deep Deterministic Policy Gradient Agents” on page 3-29
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Imitate Nonlinear MPC Controller for Flying Robot
This example shows how to train, validate, and test a deep neural network (DNN) that imitates the
behavior of a nonlinear model predictive controller for a flying robot. It then compares the behavior
of the deep neural network with that of the original controller. To train the deep neural network, this
example uses the data aggregation (DAgger) approach as in [1].

Nonlinear model predictive control (NLMPC) solves a constrained nonlinear optimization problem in
real time based on the current state of the plant. Since NLMPC solves its optimization problem in an
open-loop fashion, there is the potential to replace the controller with a trained DNN. Doing so is an
appealing option, since evaluating a DNN can be more computationally efficient than solving a
nonlinear optimization problem in real-time.

If the trained DNN reasonably approximates the controller behavior, you can then deploy the network
for your control application. You can also use the network as a warm starting point for training the
actor network of a reinforcement learning agent. For an example that does so with a DNN trained for
an MPC application, see “Train DDPG Agent with Pretrained Actor Network” on page 5-290.

Design Nonlinear MPC Controller

Design a nonlinear MPC controller for a flying robot. The dynamics for the flying robot are the same
as in “Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC” (Model Predictive
Control Toolbox) example. First, define the limit for the control variables, which are the robot thrust
levels.

umax = 3;

Create the nonlinear MPC controller object nlobj. To reduce command-window output, disable the
MPC update messages.

mpcverbosity off;
nlobj = createMPCobjImFlyingRobot(umax);

Prepare Input Data

Load the input data from DAggerInputDataFileImFlyingRobot.mat. The columns of the data set
contain:

1 x is the position of the robot along the x-axis.
2 y is the position of the robot along the y-axis.
3 θ is the orientation of the robot.
4 ẋ is the velocity of the robot along the x-axis.
5 ẏ is the velocity of the robot along the y-axis.
6 θ̇ is the angular velocity of the robot.
7 ul is the thrust on the left side of the flying robot
8 ur is the thrust on the right side of the flying robot
9 ul* is the thrust on the left side computed by NLMPC

10 ur* is the thrust on the right side computed by NLMPC

5 Train and Validate Agents

5-298



The data in DAggerInputDataFileImFlyingRobot.mat is created by computing the NLMPC
control action for randomly generated states (x, y, θ, ẋ, ẏ, θ̇), and previous control actions (ul, ur). To
generate your own training data, use the collectDataImFlyingRobot function.

Load the input data.

fileName = 'DAggerInputDataFileImFlyingRobot.mat';
DAggerData = load(fileName);
data = DAggerData.data;
existingData = data;
numCol = size(data,2);

Create Deep Neural Network

The deep neural network architecture uses the following types of layers.

• imageInputLayer is the input layer of the neural network.
• fullyConnectedLayer multiplies the input by a weight matrix and then adds a bias vector.
• reluLayer is the activation function of the neural network.
• tanhLayer constrains the value to the range to [-1,1].
• scalingLayer scales the value to the range to [-3,3].
• regressionLayer defines the loss function of the neural network.

Create the deep neural network that will imitate the NLMPC controller after training.

numObservations = numCol-2;
numActions = 2;
hiddenLayerSize = 256;

imitateMPCNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','observation')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc2')
    reluLayer('Name','relu2')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc4')
    reluLayer('Name','relu4')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc5')
    reluLayer('Name','relu5')
    fullyConnectedLayer(hiddenLayerSize,'Name','fc6')
    reluLayer('Name','relu6')    
    fullyConnectedLayer(numActions,'Name','fcLast')
    tanhLayer('Name','tanhLast')
    scalingLayer('Name','ActorScaling','Scale',umax)
    regressionLayer('Name','routput')];

Plot the network.

plot(layerGraph(imitateMPCNetwork))
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Behavior Cloning Approach

One approach to learning an expert policy using supervised learning is the behavior cloning method.
This method divides the expert demonstrations (NLMPC control actions in response to observations)
into state-action pairs and applies supervised learning to train the network.

Specify training options.

% intialize validation cell array
validationCellArray = {0,0};

options = trainingOptions('adam', ...
    'Verbose', false, ...
    'Plots', 'training-progress', ...
    'Shuffle', 'every-epoch', ...
    'MiniBatchSize', 512, ...
    'ValidationData', validationCellArray, ...
    'InitialLearnRate', 1e-3, ...
    'ExecutionEnvironment', 'cpu', ...
    'GradientThreshold', 10, ...
    'MaxEpochs', 40 ...
    );

You can train the behavior cloning neural network by following below steps

1 Collect data using the collectDataImFlyingRobot function.
2 Train the behavior cloning network using the behaviorCloningTrainNetwork function.
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Training a DNN is a computationally intensive process. To save time, load a pretrained neural
network object.

load('behaviorCloningMPCImDNNObject.mat');
imitateMPCNetBehaviorCloningObj = behaviorCloningNNObj.imitateMPCNetObj;

The training of the DNN using behavior cloning reduces the gap between the DNN and NLMPC
performance. However, the behavior cloning neural network fails to imitate the behavior of the
NLMPC controller correctly on some randomly generated data.

Data Aggregation Approach

To improve the performance of the DNN, you can learn the policy using an interactive demonstrator
method. DAgger is an iterative method where the DNN is run in the closed-loop environment. The
expert, in this case the NLMPC controller, outputs actions based on the states visited by the DNN. In
this manner, more training data is aggregated and the DNN is retrained for improved performance.
For more information, see [1].

Train the deep neural network using the DAggerTrainNetwork function. It creates
DAggerImFlyingRobotDNNObj.mat file that contains the following information.

• DatasetPath: path where the dataset corresponding to each iteration is stored
• policyObjs: policies that were trained in each iteration
• finalData: total training data collected till final iteration
• finalPolicy: best policy among all the collected policies
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First, create and initialize the parameters for training. Use the network trained using behavior
cloning (imitateMPCNetBehaviorCloningObj) as the starting point for the DAgger training.

[dataStruct,nlmpcStruct,tuningParamsStruct,neuralNetStruct] = loadDAggerParameters(existingData, ...
    numCol,nlobj,umax,options,imitateMPCNetBehaviorCloningObj);

To save time, load a pretrained neural network by setting doTraining to false. To train the DAgger
yourself, set doTraining to true.

doTraining = false;

if doTraining
    DAgger = DAggerTrainNetwork(nlmpcStruct,dataStruct,neuralNetStruct,tuningParamsStruct);
else
    load('DAggerImFlyingRobotDNNObj.mat');
end
DNN = DAgger.finalPolicy;

As an alternative, you can train the neural network with a modified policy update rule using the
DAggerModifiedTrainNetwork function. In this function, after every 20 training iterations, the
DNN is set to the most optimal configuration from the previous 20 iterations. To run this example
with a neural network object with the modified DAgger approach, use the
DAggerModifiedImFlyingRobotDNNObj.mat file.

Compare Trained DAgger Network with NLMPC Controller

To compare the performance of the NLMPC controller and the trained DNN, run closed-loop
simulations with the flying robot model.

Set initial condition for the states of the flying robot (x, y, θ, ẋ, ẏ, θ̇) and the control variables of flying
robot (ul, ur).

x0 = [-1.8200    0.5300   -2.3500    1.1700   -1.0400    0.3100]';
u0 = [-2.1800   -2.6200]';

Run a closed-loop simulation of the NLMPC controller.

% Duration
Tf = 15;
% Sample time
Ts = nlobj.Ts;
% Simulation steps
Tsteps = Tf/Ts+1;
% Run NLMPC in closed loop.
tic
[xHistoryMPC,uHistoryMPC] = simModelMPCImFlyingRobot(x0,u0,nlobj,Tf);
toc

Elapsed time is 22.981790 seconds.

Run a closed-loop simulation of the trained DAgger network.

tic
[xHistoryDNN,uHistoryDNN] = simModelDAggerImFlyingRobot(x0,u0,DNN,Ts,Tf);
toc

Elapsed time is 1.302002 seconds.
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Plot the results, and compare the NLMPC and trained DNN trajectories.

plotSimResultsImFlyingRobot(nlobj,xHistoryMPC,uHistoryMPC,xHistoryDNN,uHistoryDNN,umax,Tf)
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The DAgger neural network successfully imitates the behavior of the NLMPC controller. The flying
robot states and control action trajectories for the controller and the DAgger deep neural network
closely align. The closed-loop simulation time for the DNN is significantly less than that of the
NLMPC controller.

Animate the Flying Robot with Trained DAgger Network

To validate the performance of the trained DNN, animate the flying robot with data from the DNN
closed-loop simulation. The flying robot lands at the origin successfully.

Lx = 5;
Ly = 5;
for ct = 1:Tsteps
    x = xHistoryDNN(ct,1);
    y = xHistoryDNN(ct,2);
    theta = xHistoryDNN(ct,3);
    tL = uHistoryDNN(ct,1);
    tR = uHistoryDNN(ct,2);
    rl.env.viz.plotFlyingRobot(x,y,theta,tL,tR,Lx,Ly);
    pause(0.05);
end
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% Turn on MPC messages
mpcverbosity on;

References
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See Also
train | rlDDPGAgent

More About
• “Imitate MPC Controller for Lane Keeping Assist” on page 5-282
• “Train DQN Agent for Lane Keeping Assist” on page 5-166
• “Deep Deterministic Policy Gradient Agents” on page 3-29
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Tune PI Controller using Reinforcement Learning
This example shows how to tune a PI controller using the twin-delayed deep deterministic policy
gradient (TD3) reinforcement learning algorithm. The performance of the tuned controller is
compared with that of a controller tuned using the Control System Tuner app. Using the Control
System Tuner app to tune controllers in Simulink® requires Simulink Control Design™ software.

For relatively simple control tasks with a small number of tunable parameters, model-based tuning
techniques can get good results with a faster tuning process compared to model-free RL-based
methods. However, RL methods can be more suitable for highly nonlinear systems or adaptive
controller tuning.

To facilitate the controller comparison, both tuning methods use a linear quadratic Gaussian (LQG)
objective function.

This example uses a reinforcement learning (RL) agent to compute the gains for a PI controller. For
an example that replaces the PI controller with a neural network controller, see “Create Simulink
Environment and Train Agent” on page 1-20.

Environment Model

The environment model for this example is a water tank model. The goal of this control system is to
maintain the level of water in a tank to match a reference value.

open_system('watertankLQG')

The model includes process noise with variance E n2 t = 1.

To maintain the water level while minimizing control effort u, the controllers in this example use the
following LQG criterion.

J = lim
T ∞

E 1
T∫0 T

Href − y t 2 + 0 . 01u2 t dt

5 Train and Validate Agents

5-306



To simulate the controller in this model, you must specify the simulation time Tf and the controller
sample time Ts in seconds.

Ts = 0.1;
Tf = 10;

For more information about the water tank model, see “watertank Simulink Model” (Simulink Control
Design).

Tune PI Controller using Control System Tuner

To tune a controller in Simulink using Control System Tuner, you must specify the controller block
as a tuned block and define the goals for the tuning process. For more information on using Control
System Tuner, see “Tune a Control System Using Control System Tuner” (Simulink Control Design).

For this example, open the saved session ControlSystemTunerSession.mat using Control
System Tuner. This session specifies the PID Controller block in the watertankLQG model as a
tuned block and contains an LQG tuning goal.

controlSystemTuner("ControlSystemTunerSession")

To tune the controller, on the Tuning tab, click Tune.

The tuned proportional and integral gains are approximately 9.8 and 1e-6, respectively.

Kp_CST = 9.80199999804512;
Ki_CST = 1.00019996230706e-06;

Create Environment for Training Agent

To define the model for training the RL agent, modify the water tank model using the following steps.

1 Delete the PID Controller.
2 Insert an RL Agent block.
3 Create the observation vector ∫e dt e T  where e = Href − h, h is the height of the tank, and

Href  is the reference height. Connect the observation signal to the RL Agent block.
4 Define the reward function for the RL agent as the negative of the LQG cost , that is,

Reward = − Href − h t 2 + 0 . 01u2 t . The RL agent maximizes this reward, thus minimizing
the LQG cost.

The resulting model is rlwatertankPIDTune.slx.

mdl = 'rlwatertankPIDTune';
open_system(mdl)

 Tune PI Controller using Reinforcement Learning

5-307



Create the environment interface object. To do so, use the localCreatePIDEnv function defined at
the end of this example.

[env,obsInfo,actInfo] = localCreatePIDEnv(mdl);

Extract the observation and action dimensions for this environment.

numObservations = obsInfo.Dimension(1);
numActions = prod(actInfo.Dimension);

Fix the random generator seed for reproducibility.

rng(0)

Create TD3 Agent

Given observations, a TD3 agent decides which action to take using an actor representation. To
create the actor, first create a deep neural network with the observation input and the action output.
For more information, see rlContinuousDeterministicActor.

You can model a PI controller as a neural network with one fully-connected layer with error and error
integral observations.

u = ∫e dt e * Ki Kp
T

Here:

• u is the output of the actor neural network.
• Kp and Ki are the absolute values of the neural network weights.
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• e = Href − h t , h t  is the height of the tank, and Href  is the reference height.

Gradient descent optimization can drive the weights to negative values. To avoid negative weights,
replace normal fullyConnectedLayer with a fullyConnectedPILayer. This layer ensures that
the weights are positive by implementing the function Y = abs WEIGHTS * X. This layer is defined in
fullyConnectedPILayer.m. For more information on defining custom layers, see “Define Custom
Deep Learning Layers”.

initialGain = single([1e-3 2]);
actorNetwork = [
    featureInputLayer(numObservations,'Normalization','none','Name','state')
    fullyConnectedPILayer(initialGain, 'Action')];
actorNetwork = dlnetwork(actorNetwork);
actorOptions = rlOptimizerOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);

A TD3 agent approximates the long-term reward given observations and actions using two critic
value-function representations. To create the critics, first create a deep neural network with two
inputs, the observation and action, and one output. For more information on creating a deep neural
network value function representation, see “Create Policies and Value Functions” on page 4-2.

To create the critics, use the localCreateCriticNetwork function defined at the end of this
example. Use the same network structure for both critic representations.

criticNetwork = localCreateCriticNetwork(numObservations,numActions);
criticOpts = rlOptimizerOptions('LearnRate',1e-3,'GradientThreshold',1);

critic1 = rlQValueFunction(dlnetwork(criticNetwork),obsInfo,actInfo,...
    'ObservationInputNames','state','ActionInputNames','action');
critic2 = rlQValueFunction(dlnetwork(criticNetwork),obsInfo,actInfo,...
    'ObservationInputNames','state','ActionInputNames','action');
critic = [critic1 critic2];

Configure the agent using the following options.

• Set the agent to use the controller sample time Ts.
• Set the mini-batch size to 128 experience samples.
• Set the experience buffer length to 1e6.
• Set the exploration model and target policy smoothing model to use Gaussian noise with variance

of 0.1.

Specify the TD3 agent options using rlTD3AgentOptions.

agentOpts = rlTD3AgentOptions(...
    'SampleTime',Ts,...
    'MiniBatchSize',128, ...
    'ExperienceBufferLength',1e6,...
    'ActorOptimizerOptions',actorOptions,...
    'CriticOptimizerOptions',criticOpts);
agentOpts.TargetPolicySmoothModel.StandardDeviation = sqrt(0.1);

Create the TD3 agent using the specified actor representation, critic representation, and agent
options. For more information, see rlTD3AgentOptions.

agent = rlTD3Agent(actor,critic,agentOpts);
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Train Agent

To train the agent, first specify the following training options.

• Run each training for at most 1000 episodes, with each episode lasting at most 100 time steps.
• Display the training progress in the Episode Manager (set the Plots option) and disable the

command-line display (set the Verbose option).
• Stop training when the agent receives an average cumulative reward greater than -355 over 100

consecutive episodes. At this point, the agent can control the level of water in the tank.

For more information, see rlTrainingOptions.

maxepisodes = 1000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes, ...
    'MaxStepsPerEpisode',maxsteps, ...
    'ScoreAveragingWindowLength',100, ...
    'Verbose',false, ...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-355);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load pretrained agent for the example.
    load('WaterTankPIDtd3.mat','agent')
end
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Validate Trained Agent

Validate the learned agent against the model by simulation.

simOpts = rlSimulationOptions('MaxSteps',maxsteps);
experiences = sim(env,agent,simOpts);

The integral and proportional gains of the PI controller are the absolute weights of the actor
representation. To obtain the weights, first extract the learnable parameters from the actor.

actor = getActor(agent);
parameters = getLearnableParameters(actor);

Obtain the controller gains.

Ki = abs(parameters{1}(1))

Ki = single
    0.3958

Kp = abs(parameters{1}(2))

Kp = single
    8.0822
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Apply the gains obtained from the RL agent to the original PI controller block and run a step-
response simulation.

mdlTest = 'watertankLQG';
open_system(mdlTest); 
set_param([mdlTest '/PID Controller'],'P',num2str(Kp))
set_param([mdlTest '/PID Controller'],'I',num2str(Ki))
sim(mdlTest)

Extract the step response information, LQG cost, and stability margin for the simulation. To compute
the stability margin, use the localStabilityAnalysis function defined at the end of this example.

rlStep = simout;
rlCost = cost;
rlStabilityMargin = localStabilityAnalysis(mdlTest);

Apply the gains obtained using Control System Tuner to the original PI controller block and run a
step-response simulation.

set_param([mdlTest '/PID Controller'],'P',num2str(Kp_CST))
set_param([mdlTest '/PID Controller'],'I',num2str(Ki_CST))
sim(mdlTest)
cstStep = simout;
cstCost = cost;
cstStabilityMargin = localStabilityAnalysis(mdlTest);

Compare Controller Performance

Plot the step response for each system.

figure
plot(cstStep)
hold on
plot(rlStep)
grid on
legend('Control System Tuner','RL','Location','southeast')
title('Step Response')
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Analyze the step response for both simulations.

rlStepInfo = stepinfo(rlStep.Data,rlStep.Time);
cstStepInfo = stepinfo(cstStep.Data,cstStep.Time);
stepInfoTable = struct2table([cstStepInfo rlStepInfo]);
stepInfoTable = removevars(stepInfoTable,{...
    'SettlingMin','SettlingMax','Undershoot','PeakTime'});
stepInfoTable.Properties.RowNames = {'Control System Tuner','RL'};
stepInfoTable

stepInfoTable=2×5 table
                            RiseTime    TransientTime    SettlingTime    Overshoot     Peak 
                            ________    _____________    ____________    _________    ______

    Control System Tuner    0.77737        1.3594           1.3278        0.33125     9.9023
    RL                      0.98024        1.7408           1.7073        0.40451     10.077

Analyze the stability for both simulations.

stabilityMarginTable = struct2table([cstStabilityMargin rlStabilityMargin]);
stabilityMarginTable = removevars(stabilityMarginTable,{...
    'GMFrequency','PMFrequency','DelayMargin','DMFrequency'});
stabilityMarginTable.Properties.RowNames = {'Control System Tuner','RL'};
stabilityMarginTable

stabilityMarginTable=2×3 table
                            GainMargin    PhaseMargin    Stable
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                            __________    ___________    ______

    Control System Tuner      8.1616        84.124       true  
    RL                        9.9226        84.242       true  

Compare the cumulative LQG cost for the two controllers. The RL-tuned controller produces a slightly
more optimal solution.

rlCumulativeCost  = sum(rlCost.Data)

rlCumulativeCost = -375.9135

cstCumulativeCost = sum(cstCost.Data)

cstCumulativeCost = -376.9373

Both controllers produce stable responses, with the controller tuned using Control System Tuner
producing a faster response. However, the RL tuning method produces a higher gain margin and a
more optimal solution.

Local Functions

Function to create the water tank RL environment.

function [env,obsInfo,actInfo] = localCreatePIDEnv(mdl)

% Define the observation specification obsInfo and action specification actInfo.
obsInfo = rlNumericSpec([2 1]);
obsInfo.Name = 'observations';
obsInfo.Description = 'integrated error and error';

actInfo = rlNumericSpec([1 1]);
actInfo.Name = 'PID output';

% Build the environment interface object.
env = rlSimulinkEnv(mdl,[mdl '/RL Agent'],obsInfo,actInfo);

% Set a cutom reset function that randomizes the reference values for the model.
env.ResetFcn = @(in)localResetFcn(in,mdl);
end

Function to randomize the reference signal and initial height of the water tank at the beginning of
each episode.

function in = localResetFcn(in,mdl)

% randomize reference signal
blk = sprintf([mdl '/Desired \nWater Level']);
hRef = 10 + 4*(rand-0.5);
in = setBlockParameter(in,blk,'Value',num2str(hRef));

% randomize initial height
hInit = 0;
blk = [mdl '/Water-Tank System/H'];
in = setBlockParameter(in,blk,'InitialCondition',num2str(hInit));

end
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Function to linearize and compute stability margins of the SISO water tank system.

function margin = localStabilityAnalysis(mdl)

io(1) = linio([mdl '/Sum1'],1,'input');
io(2) = linio([mdl '/Water-Tank System'],1,'openoutput');
op = operpoint(mdl);
op.Time = 5;
linsys = linearize(mdl,io,op);

margin = allmargin(linsys);
end

Function to create critic network.

function criticNetwork = localCreateCriticNetwork(numObservations,numActions)
statePath = [
    featureInputLayer(numObservations,'Normalization','none','Name','state')
    fullyConnectedLayer(32,'Name','fc1')];
actionPath = [
    featureInputLayer(numActions,'Normalization','none','Name','action')
    fullyConnectedLayer(32,'Name','fc2')];
commonPath = [
    concatenationLayer(1,2,'Name','concat')
    reluLayer('Name','reluBody1')
    fullyConnectedLayer(32,'Name','fcBody')
    reluLayer('Name','reluBody2')
    fullyConnectedLayer(1,'Name','qvalue')];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'fc1','concat/in1');
criticNetwork = connectLayers(criticNetwork,'fc2','concat/in2');
end

See Also
train | rlTD3Agent

More About
• “Twin-Delayed Deep Deterministic Policy Gradient Agents” on page 3-33
• “Define Custom Deep Learning Layers”
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Train Reinforcement Learning Agent with Constraint
Enforcement

This example shows how to train a reinforcement learning (RL) agent with actions constrained using
the Constraint Enforcement block. This block computes modified control actions that are closest to
the actions output by the agent subject to constraints and action bounds. Training reinforcement
learning agents requires Reinforcement Learning Toolbox™ software.

In this example, the goal of the agent is to bring a green ball as close as possible to the changing
target position of a red ball [1].

The dynamics for the green ball from velocity v to position x are governed by Newton's law with a
small damping coefficient τ.

1
s(τs + 1).

The feasible region for the ball position 0 ≤ x ≤ 1 and the velocity of the green ball is limited to the
range −1, 1 .

The position of the target red ball is uniformly random across the range 0, 1 . The agent can observe
only a noisy estimate of this target position.

Set the random seed and configure model parameters

% set random seed
rng('default')
% parameters
Tv = 0.8;            % sample time for visualizer
Ts = 0.1;            % sample time for controller
tau = 0.01;          % damping constant for green ball
velLimit = 1;        % maximum speed for green ball
s0 = 200;            % random seed
s1 = 100;            % random seed
x0 = 0.2;            % initial position for ball

Create Environment and Agent for Collecting Data

In this example, a constraint function is represented using a trained deep neural network. To train
the network, you must first collect training data from the environment.

To do so, first create an RL environment using the rlBallOneDim model. This model applies random
external actions through an RL Agent block to the environment.

mdl = 'rlBallOneDim';
open_system(mdl)
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The Environment subsystem performs the following steps.

• Applies the input velocity to the environment model and generates the resulting output
observations

• Computes the training reward r = 1− 10 x− xr
2 +, where xr denotes the position of the red ball

• Sets the termination signal isDone to true if the ball position violates the constraint 0 ≤ x ≤ 1

For this model, the observations from the environment include the position and velocity of the green
ball and the noisy measurement of the red ball position. Define a continuous observation space for
these three values.

obsInfo = rlNumericSpec([3 1]);

The action that the agent applies to the green ball is its velocity. Create a continuous action space
and apply the required velocity limits.

actInfo = rlNumericSpec([1 1],'LowerLimit',-velLimit,'UpperLimit',velLimit);

Create an RL environment for this model.

agentblk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);

Specify a reset function, which randomly initializes the environment at the start of each training
episode or simulation.

env.ResetFcn = @(in)localResetFcn(in);

Next, create a DDPG reinforcement learning agent, which supports continuous actions and
observations, using the createDDPGAgentBall helper function. This function creates critic and
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actor representations based on the action and observation specifications and uses the representations
to create a DDPG agent.

agent = createDDPGAgentBall(Ts,obsInfo,actInfo);

In the rlBallOneDim model, the RL Agent block does not generate actions. Instead, it is configured
to pass a random external action to the environment. The purpose for using a data-collection model
with an inactive RL Agent block is to ensure that the environment model, action and observation
signal configurations, and model reset function used during data collection match those used during
subsequent agent training.

Learn Constraint Function

In this example, the ball position signal xk + 1 must satisfy 0 ≤ xk + 1 ≤ 1. To allow for some slack, the
constraint is set to be 0 . 1 ≤ xk + 1 ≤ 0 . 9 . The dynamic model from velocity to position has a very
small damping constant, thus it can be approximated by xk + 1 ≈ xk + h xk uk. Therefore, the
constraints for green ball are given by the following equation.

xk
−xk

+
h xk
−h xk

uk ≤
0 . 9
−0 . 1

The Constraint Enforcement block accepts constraints of the form fx + gxu ≤ c. For the above
equation, the coefficients of this constraint function are as follows.

fx =
xk
−xk

, gx =
h xk
−h xk

, c =
0 . 9
−0 . 1

The function h xk  is approximated by a deep neural network that is trained on the data collected by
simulating the RL agent within the environment. To learn the unknown function h xk , the RL agent
passes a random external action to the environment that is uniformly distributed in the range −1, 1 .

To collect data, use the collectDataBall helper function. This function simulates the environment
and agent and collects the resulting input and output data. The resulting training data has three
columns: xk, uk, and xk + 1.

For this example, load precollected training data. To collect the data yourself, set collectData to
true.

collectData = false;
if collectData
    count = 1050;
    data = collectDataBall(env,agent,count);
else
    load trainingDataBall data
end

Train a deep neural network to approximate the constraint function using the
trainConstraintBall helper function. This function formats the data for training then creates and
trains a deep neural network. Training a deep neural network requires Deep Learning Toolbox™
software.

For this example, to ensure reproducibility, load a pretrained network. To train the network yourself,
set trainConstraint to true.
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trainConstraint = false;
if trainConstraint
    network = trainConstraintBall(data);
else
    load trainedNetworkBall network
end

The following figure shows an example of the training progress.

Validate the trained neural network using the validateNetworkBall helper function. This function
processes the input training data using the trained deep neural network. It then compares the
network output with the training output and computes the root mean-squared error (RMSE).

validateNetworkBall(data,network)

Test Data RMSE = 9.996700e-02

The small RMSE value indicates that the network successfully learned the constraint function.

Train Agent with Constraint Enforcement

To train the agent with constraint enforcement, use the rlBallOneDimWithConstraint model.
This model constrains the actions from the agent before applying them to the environment.

mdl = 'rlBallOneDimWithConstraint';
open_system(mdl)
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To view the constraint implementation, open the Constraint subsystem. Here, the trained deep neural
network approximates h xk , and the Constraint Enforcement block enforces the constraint function
and velocity bounds.

For this example the following Constraint Enforcement block parameter settings are used.

• Number of constraints — 2
• Number of actions — 1
• Constraint bound — [0.9;-0.1]

Create an RL environment using this model. The observation and action specifications match those
used for the previous data collection environment.

agentblk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);
env.ResetFcn = @(in)localResetFcn(in);
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Specify options for training the agent. Train the RL agent for 300 episodes with 300 steps per
episode.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',300, ...
    'MaxStepsPerEpisode', 300, ...
    'Verbose', false, ...
    'Plots','training-progress');

Train the agent. Training is a time-consuming process. For this example, load a pretrained agent
using the loadAgentParams helper function. To train the agent yourself, set trainAgent to true.

trainAgent = false;
if trainAgent
    trainingStats = train(agent,env,trainOpts);
else
    loadAgentParams(agent,'rlAgentBallParams')
end

The following figure shows the training results. The training process converges to a good agent
within 20 episodes.
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Since Total Number of Steps equals the product of Episode Number and Episode Steps, each
training episode runs to the end without early termination. Therefore, the Constraint Enforcement
block ensures that the ball position x never violates the constraint 0 ≤ x ≤ 1.

Simulate the trained agent using the simWithTrainedAgentBall helper function.

simWithTrainedAgentBall(env,agent)

The agent successfully tracks the position of the red ball.

Train Agent Without Constraint Enforcement

To see the benefit of training an agent with constraint enforcement, you can train the agent without
constraints and compare the training results to the constraint enforcement case.

To train the agent without constraints, use the rlBallOneDimWithoutConstraint model. This
model applies the actions from the agent directly to the environment.
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mdl = 'rlBallOneDimWithoutConstraint';
open_system(mdl)

Create an RL environment using this model.

agentblk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);
env.ResetFcn = @(in)localResetFcn(in);

Create a new DDPG agent to train. This agent has the same configuration as the agent used in the
previous training.

agent = createDDPGAgentBall(Ts,obsInfo,actInfo);

Train the agent using the same training options as in the constraint enforcement case. For this
example, as with the previous training, load a pretrained agent. To train the agent yourself, set
trainAgent to true.

trainAgent = false;
if trainAgent
    trainingStats2 = train(agent,env,trainOpts);
else
    loadAgentParams(agent,'rlAgentBallCompParams')
end

The following figure shows the training results. The training process converges to a good agent after
50 episodes. After that point, the agent has poor performance for some episodes, for example around
episodes 140 and 230.
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Since Total Number of Steps is less than the product of Episode Number and Episode Steps, the
training includes episodes that terminated early due to constraint violations.

Simulate the trained agent.

simWithTrainedAgentBall(env,agent)
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The agent successfully tracks the position of the red ball with more steady-state offset than the agent
trained with constraints.

Conclusion

In this example, training an RL agent with the Constraint Enforcement block ensures that the actions
applied to the environment never produce a constraint violation. As a result, the training process
converges to a good agent quickly. Training the same agent without constraints produces slower
convergence and poorer performance.

bdclose('rlBallOneDim')
bdclose('rlBallOneDimWithConstraint')
bdclose('rlBallOneDimWithoutConstraint')
close('Ball One Dim')

Local Reset Function

function in = localResetFcn(in)
% Reset function
in = setVariable(in,'x0',rand);
in = setVariable(in,'s0',randi(5000));
in = setVariable(in,'s1',randi(5000));
end
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Train Custom LQR Agent
This example shows how to train a custom linear quadratic regulation (LQR) agent to control a
discrete-time linear system modeled in MATLAB®.

Create Linear System Environment

The reinforcement learning environment for this example is a discrete-time linear system. The
dynamics for the system are given by

xt + 1 = Axt + But

The feedback control law is

ut = − Kxt

The control objective is to minimize the quadratic cost: J = ∑t = 0
∞ xt′Qxt + ut′Rut .

In this example, the system matrices are

A =
1 . 05 0 . 05 0 . 05
0 . 05 1 . 05 0 . 05

0 0 . 05 1 . 05

B =
0 . 1 0 0 . 2
0 . 1 0 . 5 0

0 0 0 . 5

A = [1.05,0.05,0.05;0.05,1.05,0.05;0,0.05,1.05];
B = [0.1,0,0.2;0.1,0.5,0;0,0,0.5]; 

The quadratic cost matrices are:

Q =
10 3 1
3 5 4
1 4 9

R =
0 . 5 0 0

0 0 . 5 0
0 0 0 . 5

Q = [10,3,1;3,5,4;1,4,9]; 
R = 0.5*eye(3);

For this environment, the reward at time t is given by rt = − xt′Qxt − ut′Rut, which is the negative of
the quadratic cost. Therefore, maximizing the reward minimizes the cost. The initial conditions are
set randomly by the reset function.

Create the MATLAB environment interface for this linear system and reward. The myDiscreteEnv
function creates an environment by defining custom step and reset functions. For more information
on creating such a custom environment, see “Create MATLAB Environment Using Custom Functions”
on page 2-41.

env = myDiscreteEnv(A,B,Q,R);
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Fix the random generator seed for reproducibility.

rng(0)

Create Custom LQR Agent

For the LQR problem, the Q-function for a given control gain K can be defined as QK x, u =
x
u

′HK
x
u

,

where HK =
Hxx Hxu
Hux Huu

 is a symmetric, positive definite matrix.

The control law to maximize QK is u = − Huu
−1Hux x, and the feedback gain is K = Huu

−1Hux .

The matrix HK contains m = 1
2n n + 1  distinct element values, where n is the sum of the number of

states and number of inputs. Denote θ as the vector corresponding to these m elements, where the
off-diagonal elements in HK are multiplied by two.

Represent the Q-function by θ, where θ contains the parameters to be learned.

QK x, u = θ′ K ϕ x, u , where ϕ x, u  is the quadratic basis function in terms of x and u.

The LQR agent starts with a stabilizing controller K0. To get an initial stabilizing controller, place the
poles of the closed-loop system A− BK0 inside the unit circle.

K0 = place(A,B,[0.4,0.8,0.5]);

To create a custom agent, you must create a subclass of the rl.agent.CustomAgent abstract class.
For the custom LQR agent, the defined custom subclass is LQRCustomAgent. For more information,
see “Create Custom Reinforcement Learning Agents” on page 3-66. Create the custom LQR agent
using Q, R, and K0. The agent does not require information on the system matrices A and B.

agent = LQRCustomAgent(Q,R,K0);

For this example, set the agent discount factor to one. To use a discounted future reward, set the
discount factor to a value less than one.

agent.Gamma = 1;

Because the linear system has three states and three inputs, the total number of learnable
parameters is m = 21. To ensure satisfactory performance of the agent, set the number of parameter
estimates Np to be greater than twice the number of learnable parameters. In this example, the value
is Np = 45.

agent.EstimateNum = 45;

To get good estimation results for θ, you must apply a persistently excited exploration model to the
system. In this example, encourage model exploration by adding white noise to the controller output:
ut = − Kxt + et. In general, the exploration model depends on the system models.

Train Agent

To train the agent, first specify the training options. For this example, use the following options.
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• Run each training episode for at most 10 episodes, with each episode lasting at most 50 time
steps.

• Display the command line display (set the Verbose option) and disable the training progress in
the Episode Manager dialog box (set the Plots option).

For more information, see rlTrainingOptions.

trainingOpts = rlTrainingOptions(...
    'MaxEpisodes',10, ...
    'MaxStepsPerEpisode',50, ...
    'Verbose',true, ...
    'Plots','none');

Train the agent using the train function.

trainingStats = train(agent,env,trainingOpts);

Episode:   1/ 10 | Episode reward:   -51.67 | Episode steps:   50 | Average reward:   -51.67 | Step Count:   50
Episode:   2/ 10 | Episode reward:   -30.29 | Episode steps:   50 | Average reward:   -40.98 | Step Count:  100
Episode:   3/ 10 | Episode reward:   -24.49 | Episode steps:   50 | Average reward:   -35.48 | Step Count:  150
Episode:   4/ 10 | Episode reward:   -18.92 | Episode steps:   50 | Average reward:   -31.34 | Step Count:  200
Episode:   5/ 10 | Episode reward:    -5.92 | Episode steps:   50 | Average reward:   -26.26 | Step Count:  250
Episode:   6/ 10 | Episode reward:   -33.73 | Episode steps:   50 | Average reward:   -22.67 | Step Count:  300
Episode:   7/ 10 | Episode reward:   -11.93 | Episode steps:   50 | Average reward:   -19.00 | Step Count:  350
Episode:   8/ 10 | Episode reward:   -29.12 | Episode steps:   50 | Average reward:   -19.93 | Step Count:  400
Episode:   9/ 10 | Episode reward:   -20.91 | Episode steps:   50 | Average reward:   -20.32 | Step Count:  450
Episode:  10/ 10 | Episode reward:    -9.52 | Episode steps:   50 | Average reward:   -21.04 | Step Count:  500

Simulate Agent and Compare with Optimal Solution

To validate the performance of the trained agent, simulate it within the MATLAB environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',20);
experience = sim(env,agent,simOptions);
totalReward = sum(experience.Reward)

totalReward = -30.6482

You can compute the optimal solution for the LQR problem using the dlqr function.

[Koptimal,P] = dlqr(A,B,Q,R); 

The optimal reward is given by Joptimal = −x0′Px0.

x0 = experience.Observation.obs1.getdatasamples(1);
Joptimal = -x0'*P*x0;

Compute the error in the reward between the trained LQR agent and the optimal LQR solution.

rewardError = totalReward - Joptimal

rewardError = 5.0439e-07

View the history of the 2-norm of error in the gains between the trained LQR agent and the optimal
LQR solution.

% number of gain updates
len = agent.KUpdate;
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err = zeros(len,1);
for i = 1:len
    % norm of error in the gain
    err(i) = norm(agent.KBuffer{i}-Koptimal);
end  
plot(err,'b*-')

Compute the norm of final error for the feedback gain.

gainError = norm(agent.K - Koptimal)

gainError = 3.7653e-11

Overall, the trained agent finds an LQR solution that is close to the true optimal LQR solution.

See Also
train

More About
• “Create Custom Reinforcement Learning Agents” on page 3-66
• “Train Reinforcement Learning Agents” on page 5-3
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Train Reinforcement Learning Policy Using Custom Training
Loop

This example shows how to define a custom training loop for a reinforcement learning policy. You can
use this workflow to train reinforcement learning policies with your own custom training algorithms
rather than using one of the built-in agents from the Reinforcement Learning Toolbox™ software.

Using this workflow, you can train policies that use any of the following policy and value function
approximators.

• rlValueFunction - State value function approximator
• rlQValueFunction - State-action value function approximator with scalar output
• rlVectorQValueFunction - State-action function approximator with vector output
• rlContinuousDeterministicActor - Continuous deterministic actor
• rlDiscreteCategoricalActor - Discrete stochastic actor
• rlContinuousGaussianActor - Continuous Gaussian actor (stochastic)

In this example, a discrete actor policy with a discrete action space is trained using the REINFORCE
algorithm (with no baseline). For more information on the REINFORCE algorithm, see “Policy
Gradient Agents” on page 3-25.

Fix the random generator seed for reproducibility.

rng(0)

For more information on the functions you can use for custom training, see Functions for Custom
Training on page 5-0 .

Environment

For this example, a reinforcement learning policy is trained in a discrete cart-pole environment. The
objective in this environment is to balance the pole by applying forces (actions) on the cart. Create
the environment using the rlPredefinedEnv function.

env = rlPredefinedEnv('CartPole-Discrete');

Extract the observation and action specifications from the environment.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Obtain the number of observations (numObs) and actions (numAct).

numObs = obsInfo.Dimension(1);
numAct = actInfo.Dimension(1);

For more information on this environment, see “Load Predefined Control System Environments” on
page 2-23.

Policy

The reinforcement learning policy in this example is a discrete-action stochastic policy. It is
represented by a deep neural network that contains fullyConnectedLayer, reluLayer, and
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softmaxLayer layers. This network outputs probabilities for each discrete action given the current
observations. The softmaxLayer ensures that the actor outputs probability values in the range [0 1]
and that all probabilities sum to 1.

Create the deep neural network for the actor.

actorNetwork = [featureInputLayer(numObs,'Normalization','none','Name','state')
                fullyConnectedLayer(24,'Name','fc1')
                reluLayer('Name','relu1')
                fullyConnectedLayer(24,'Name','fc2')
                reluLayer('Name','relu2')
                fullyConnectedLayer(2,'Name','output')
                softmaxLayer('Name','actionProb')];
actorNetwork = dlnetwork(actorNetwork)

actorNetwork = 
  dlnetwork with properties:

         Layers: [7×1 nnet.cnn.layer.Layer]
    Connections: [6×2 table]
     Learnables: [6×3 table]
          State: [0×3 table]
     InputNames: {'state'}
    OutputNames: {'actionProb'}
    Initialized: 1

Create the actor using an rlDiscreteCategoricalActor object.

actor = rlDiscreteCategoricalActor(actorNetwork,obsInfo,actInfo);

Accelerate the gradient computation of the actor.

actor = accelerate(actor,true);

Create the optimizer using rlOptimizer and rlOptimizerOptions function.

actorOpts = rlOptimizerOptions('LearnRate',1e-3);
actorOptimizer = rlOptimizer(actorOpts);

Training Setup

Configure the training to use the following options:

• Set up the training to last at most 5000 episodes, with each episode lasting at most 250 steps.
• To calculate the discounted reward, choose a discount factor of 0.995.
• Terminate the training after the maximum number of episodes is reached or when the average

reward across 100 episodes reaches the value of 220.

numEpisodes = 5000;
maxStepsPerEpisode = 250;
discountFactor = 0.995;
aveWindowSize = 100;
trainingTerminationValue = 230;

Create a vector for storing the cumulative reward for each training episode.

episodeCumulativeRewardVector = [];
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Custom Training Loop

The algorithm for the custom training loop is as follows. For each episode:

1 Reset the environment.
2 Create buffers for storing experience information: observations, actions, and rewards.
3 Generate experiences until a terminal condition occurs. To do so, evaluate the policy to get

actions, apply those actions to the environment, and obtain the resulting observations and
rewards. Store the actions, observations, and rewards in buffers.

4 Collect the training data as a batch of experiences.
5 Compute the episode Monte Carlo return, which is the discounted future reward.
6 Compute the gradient of the loss function with respect to the policy parameters.
7 Update the policy using the computed gradients.
8 Update the training visualization.
9 Terminate training if the policy is sufficiently trained.

doTraining = false;

if doTraining
    % Create a figure for training visualization using the hBuildFigure helper function.
    [trainingPlot,lineReward,lineAveReward] = hBuildFigure;
    % Enable the training visualization plot.
    set(trainingPlot,'Visible','on');

    % Train the policy for the maximum number of episodes or until the average
    % reward indicates that the policy is sufficiently trained.
    for episodeCt = 1:numEpisodes

        % 1. Reset the environment at the start of the episode
        obs = reset(env);

        episodeReward = zeros(maxStepsPerEpisode,1);

        % 2. Create buffers to store experiences. The dimensions for each buffer
        % must be as follows.
        %
        % For observation buffer:
        %     numberOfObservations x numberOfObservationChannels x batchSize
        %
        % For action buffer:
        %     numberOfActions x numberOfActionChannels x batchSize
        %
        % For reward buffer:
        %     1 x batchSize
        %
        observationBuffer = zeros(numObs,1,maxStepsPerEpisode);
        actionBuffer = zeros(numAct,1,maxStepsPerEpisode);
        rewardBuffer = zeros(1,maxStepsPerEpisode);

        % 3. Generate experiences for the maximum number of steps per
        % episode or until a terminal condition is reached.
        for stepCt = 1:maxStepsPerEpisode

            % Compute an action using the policy based on the current
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            % observation.
            action = getAction(actor,{obs});
            action = action{1};

            % Apply the action to the environment and obtain the resulting
            % observation and reward.
            [nextObs,reward,isdone] = step(env,action);

            % Store the action, observation, and reward experiences in buffers.
            observationBuffer(:,:,stepCt) = obs;
            actionBuffer(:,:,stepCt) = action;
            rewardBuffer(:,stepCt) = reward;

            episodeReward(stepCt) = reward;
            obs = nextObs;

            % Stop if a terminal condition is reached.
            if isdone
                break;
            end

        end

        % 4. Create training data. Training is performed using batch data. The
        % batch size equal to the length of the episode.
        batchSize = min(stepCt,maxStepsPerEpisode);
        observationBatch = observationBuffer(:,:,1:batchSize);
        actionBatch = actionBuffer(:,:,1:batchSize);
        rewardBatch = rewardBuffer(:,1:batchSize);

        % Compute the discounted future reward.
        discountedReturn = zeros(1,batchSize);
        for t = 1:batchSize
            G = 0;
            for k = t:batchSize
                G = G + discountFactor ^ (k-t) * rewardBatch(k);
            end
            discountedReturn(t) = G;
        end

        % 5. Organize data to pass to the loss function.
        lossData.batchSize = batchSize;
        lossData.actInfo = actInfo;
        lossData.actionBatch = actionBatch;
        lossData.discountedReturn = discountedReturn;

        % 6. Compute the gradient of the loss with respect to the policy
        % parameters.
        actorGradient = gradient(actor,@actorLossFunction,...
            {observationBatch},lossData);

        % 7. Update the actor network using the computed gradients.
        [actor,actorOptimizer] = update(actorOptimizer,actor,actorGradient);

        % 8. Update the training visualization.
        episodeCumulativeReward = sum(episodeReward);
        episodeCumulativeRewardVector = cat(2,...
            episodeCumulativeRewardVector,episodeCumulativeReward);
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        movingAveReward = movmean(episodeCumulativeRewardVector,...
            aveWindowSize,2);
        addpoints(lineReward,episodeCt,episodeCumulativeReward);
        addpoints(lineAveReward,episodeCt,movingAveReward(end));
        drawnow;

        % 9. Terminate training if the network is sufficiently trained.
        if max(movingAveReward) > trainingTerminationValue
            break
        end

    end
else
    load("CustomActor.mat");
end

Simulation

After training, simulate the trained policy.

Before simulation, reset the environment.

rng(0)
obs = reset(env);

Enable the environment visualization, which is updated each time the environment step function is
called.

plot(env)

For each simulation step, perform the following actions.

1 Get the action by sampling from the policy using the getAction function.
2 Step the environment using the obtained action value.
3 Terminate if a terminal condition is reached.

for stepCt = 1:maxStepsPerEpisode
    
    % Select action according to trained policy
    action = getAction(actor,{obs});
        
    % Step the environment
    [nextObs,reward,isdone] = step(env,action{1});
    
    % Check for terminal condition
    if isdone
        break
    end
    
    obs = nextObs;
    
end
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Functions for Custom Training

To obtain actions and value functions for given observations from Reinforcement Learning Toolbox
policy and value function approximators, you can use the following functions.

• getValue — Obtain the estimated state value or state-action value function.
• getAction — Obtain the action from an actor based on the current observation.
• getMaxQValue — Obtain the estimated maximum state-action value function for a discrete Q-

value approximator.

If your policy or value function approximator is a recurrent neural network, that is, a neural network
with at least one layer that has hidden state information, the preceding functions can return the
current network state. You can use the following function syntaxes to get and set the state of your
approximator.

• state = getState(critic) — Obtain the state of approximator critic.
• newCritic = setState(oldCritic,state) — Set the state of approximator newCritic, and

return the result in oldCritic.
• newCritic = resetState(oldCritic) — Reset all state values of oldCritic to zero and

return the result in newCritic.

You can get and set the learnable parameters of your approximator using the
getLearnableParameters and setLearnableParameters function, respectively.

In addition to these functions, you can use the setLoss, gradient, optimize, and
syncParameters functions to set parameters and compute gradients for your policy and value
function approximators.

gradient

The gradient function computes the gradients of the approximator loss function. You can compute
several different gradients. For example, to compute the gradient of the approximator outputs with
respect to its inputs, use the following syntax.

grad = gradient(actor,"output-input",inputData)

Here:
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• actor is a policy or value function approximator object.
• inputData contains values for the input channels to the approximator.
• grad contains the computed gradients.

For more information, at the MATLAB command line, type help
rl.function.AbstractFunction.gradient

syncParameters

The syncParameters function updates the learnable parameters of one policy or value function
approximator based on those of another approximator. This function is useful for updating a target
actor or critic approximator, as is done for DDPG agents. To synchronize parameters values between
two approximators, use the following syntax.

newTargetApproximator = syncParameters(oldTargetApproximator,sourceApproximator,smoothFactor)

Here:

• oldTargetApproximator is a policy or value function approximator object with parameters θold.
• sourceApproximator is a policy or value function approximator object with the same structure

as oldTargetRep, but with parameters θsource.
• smoothFactor is a smoothing factor (τ) for the update.
• newTargetApproximator has the same structure as oldRep, but its parameters are

θnew = τθsource + 1− τ θold.

Loss Function

The loss function in the REINFORCE algorithm is the product of the discounted reward and the log of
the policy, summed across all time steps. The discounted reward calculated in the custom training
loop must be resized to make it compatible for multiplication with the policy.

function loss = actorLossFunction(policy, lossData)

    policy = policy{1};

    % Create the action indication matrix.
    batchSize = lossData.batchSize;
    Z = repmat(lossData.actInfo.Elements',1,batchSize);
    actionIndicationMatrix = lossData.actionBatch(:,:) == Z;
    
    % Resize the discounted return to the size of policy.
    G = actionIndicationMatrix .* lossData.discountedReturn;
    G = reshape(G,size(policy));
    
    % Round any policy values less than eps to eps.
    policy(policy < eps) = eps;
    
    % Compute the loss.
    loss = -sum(G .* log(policy),'all');
    
end

Helper Function

The following helper function creates a figure for training visualization.
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function [trainingPlot, lineReward, lineAveReward] = hBuildFigure()
    plotRatio = 16/9;
    trainingPlot = figure(...
                'Visible','off',...
                'HandleVisibility','off', ...
                'NumberTitle','off',...
                'Name','Cart Pole Custom Training');
    trainingPlot.Position(3) = plotRatio * trainingPlot.Position(4);
    
    ax = gca(trainingPlot);
    
    lineReward = animatedline(ax);
    lineAveReward = animatedline(ax,'Color','r','LineWidth',3);
    xlabel(ax,'Episode');
    ylabel(ax,'Reward');
    legend(ax,'Cumulative Reward','Average Reward','Location','northwest')
    title(ax,'Training Progress');
end

See Also
train

More About
• “Create Custom Reinforcement Learning Agents” on page 3-66
• “Train Reinforcement Learning Agents” on page 5-3
• “Custom Training Loop with Simulink Action Noise” on page 5-339
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Custom Training Loop with Simulink Action Noise
This example shows how to tune a controller for vehicle platooning applications using a custom
reinforcement learning (RL) training loop. For this application, action noise is generated in the
Simulink® model to promote exploration during training.

For an example on tuning a PID-based vehicle platooning system, see “Design Controller for Vehicle
Platooning” (Simulink Control Design).

Platooning has the following control objectives [1].

• Individual vehicle stability — Spacing error for each following vehicle converges to zero if the
preceding vehicle is traveling at constant speed.

• String stability — Spacing errors do not amplify as they propagate towards the tail of the vehicle
string.

Platooning Environment Model

In this example, there are five vehicles in the platoon. Every vehicle is modeled as a truck-trailer
system with the following parameters. All lengths are in meters.

L1 = 6;               % Truck length
L2 = 10;              % Trailer length
M1 = 1;               % Hitch length
L = L1 + L2 + M1 + 5; % Desired front-to-front vehicle spacing

The lead vehicle follows a given acceleration profile. Each trailing vehicle has a controller that
controls its acceleration.

Open the Simulink® model.

mdl = "fiveVehiclePlatoonEnv";
open_system(mdl)
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The model contains an RL Agent block with its last action input port enabled. This input port allows
the specification of custom noise in the Simulink model for off-policy RL agents, such as deep
deterministic policy gradient (DDPG) agents.

Specify the path to the RL Agent block.

agentBlk = mdl + "/RL Agent";

Controller Structure

In this example, each trailing vehicle (ego vehicle) has the same continuous-time controller structure
and parameterization.

aego = K1afront− K2 vego− vfront − K3 xego− xfront + L

Here:

• aego, vego, and xego are the respective acceleration, velocity, and position of the ego vehicle.
• afront, vfront, and xfront are the respective acceleration, velocity, and position of the vehicle directly

in front of the ego vehicle.

Each vehicle has full access to its own velocity and position states but can only access the
acceleration, velocity, and position of the vehicle directly in front using wireless communication.

The controller minimizes the velocity error vfront− vego using the velocity gain K2 and minimizes the
spacing error xego− xfront + L using the spacing gain K3. The feedforward gain K1 is used to improve
tracking of the front vehicle.
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The lead vehicle' acceleration is assumed to be a sine wave

alead = A sin wt

Here:

• alead is the lead vehicle acceleration (m/s^2).
• A is the amplitude of the sine wave (m/s).
• w is the frequency of the sine wave (rad/s).
• t is the simulation time (s).

Reinforcement Learning Agent Design

The objective of the agent is to compute adaptive gains so that each vehicle can track the desired
spacing with respect to the vehicle immediately in front. Therefore, the model is configured such
that:

• The action signal consists of the gains K = K1 K2 K3  shared by all vehicles except the lead
vehicle. Each gain has a lower bound of 0 and upper bounds of 1, 20, and 20, respectively. The
agent calculates new gains once per second. To encourage exploration during training, the gains
are perturbed by random noise with a zero-mean normal distribution: Knoisy = K + Ν 0, σ2  where
the variance σ2 = 0 . 02, 0 . 1, 0 . 1 .

• The observation signal consists of the vehicle spacing (diff x  minus the target spacing (L , the
vehicle velocities (v), and the vehicle accelerations (a).

• The reward calculated at every time step t is

rt = ∑ 1
1 + st− L 2 − 0 . 2∑ Kt− 1− Kt− 2

2− 1 . 0 maxOvershoot st, L − 10ct

where:

• st is the vehicle spacing (diff xt ) at time step t.
• maxOvershoot st, L  calculates the max overshoot of all vehicles given the actual vehicle spacing st

and the desired spacing L. In this case, overshoot is defined as when the vehicle spacing is less
than the desired spacing st < L.

• ct =any st+ L1 + L2 + M1− L ≤ 0  indicates if a vehicle collision occurs. The simulation will
terminate if ct is true.

The first term in the reward function encourages the vehicle spacing to match L. The second term
penalizes large changes in gain between time steps. The third term penalizes overshooting the target
spacing (getting too close to the front vehicle). Finally, the fourth term penalizes collisions.

For this example, to accommodate the custom noise specified in the model, you implement a custom
DDPG training loop.

Define Model Parameters

Define the training and simulation parameters that remain fixed during training.

Ts = 1;                       % Sample time (seconds)
Tf = 100;                     % Simulation length (seconds)
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AccelNoiseV = ones(1,5)*0.01; % Acceleration input noise variance
VelNoiseV = ones(1,5)*0.01;   % Velocity sensor noise variance
PosNoiseV = ones(1,5)*0.01;   % Position sensor noise variance
ParamLowerLimit = [0 0 0]';   % Lower limits for the controller gains
ParamUpperLimit = [1 20 20]'; % Upper limits for the controller gains
UseParamNoise = 1;            % Option to indicate if noise is injected

Define the parameters that change every training episode. The values for these parameters are
updated in the environment reset function resetFunction.

LeadA = 2;                    % Lead vehicle acceleration amplitude
LeadF = 1;                    % Lead vehicle acceleration frequency
ParamNoiseV = [0.02 0.1 0.1]; % Variance for controller gains

% Random noise seeds
ParamNoiseSeed = 1:3;       % Controller gain noise seed
AccelNoiseSeed = 1:5 + 100; % Acceleration input noise seed
VelNoiseSeed = 1:5 + 200;   % Velocity sensor noise seed
PosNoiseSeed = 1:5 + 300;   % Position sensor noise seed

% Initial position and velocity of each vehicle
InitialPositions  = [200 150 100 50 0] + 50; % Positions
InitialVelocities = [10 10 10 10 10];        % Velocities

Create Environment

Create an environment using rlSimulinkEnv.

To do so, first define the observation and action specifications for the environment.

obsInfo = rlNumericSpec([14 1]);
actInfo = rlNumericSpec([3  1],...
    LowerLimit=ParamLowerLimit,...
    UpperLimit=ParamUpperLimit);
obsInfo.Name = "measurements";
actInfo.Name = "control_gains";

Next, create the environment object.

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo);

Set the environment reset function to the local function resetFunction included with this example.
This function varies the training conditions for each episode.

env.ResetFcn = @resetFunction;

Noise in the model is specified using the Random Number (Simulink) block. Each block has its own
random number generator and thus its own starting seed parameter. To ensure the noise stream
varies across episodes, the seed variables are updated using resetFunction .

Create Actor, Critic, and Policy

Create actor and critic function approximators for the agent using the local function
createNetworks included with this example.

[critic,actor] = createNetworks(obsInfo,actInfo);

Create optimizer objects for updating the actor and critic. Use the same options for both optimizers.
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optimizerOpt = rlOptimizerOptions(...
    LearnRate=1e-3, ...
    GradientThreshold=1, ...
    L2RegularizationFactor=1e-3);
criticOptimizer = rlOptimizer(optimizerOpt);
actorOptimizer  = rlOptimizer(optimizerOpt);

Create a deterministic policy for the actor approximator.

policy = rlDeterministicActorPolicy(actor);

Specify the policy sample time.

policy.SampleTime = Ts;

Create Experience Buffer

Create an experience buffer for the agent with a maximum length of 1e6.

replayMemory = rlReplayMemory(obsInfo,actInfo,1e6);

Data Required for Learning

To update the actor and critic during training, the runEpisode function processes each experience
as it is received from the environment. For this example, the processing function is the
processExperienceFcn local function.

This function requires additional data to perform its processing. Create a structure to store this
additional data.

processExpData.Critic = critic;
processExpData.TargetCritic = critic;
processExpData.Actor = actor;
processExpData.TargetActor = actor;
processExpData.ReplayMemory = replayMemory;
processExpData.CriticOptimizer = criticOptimizer;
processExpData.ActorOptimizer = actorOptimizer;

processExpData.MiniBatchSize = 128;
processExpData.DiscountFactor = 0.99;
processExpData.TargetSmoothFactor = 1e-3;

Each episode, the processExperienceFcn function updates the critics, actors, replay memory, and
optimizers. The updated data is used as the input for the next episode.

Training Loop

To train the agent, the custom training loop simulates the agent in the environment for a maximum of
maxEpisodes episodes.

maxEpisodes = 1000;

Compute the maximum number of steps per episode using the simulation time and sample time.

maxSteps = ceil(Tf/Ts);

For this custom training loop:
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• The runEpisode function simulates the agent in the environment for one episode.
• Experiences are processed as they are received from the environment using the

processExperienceFcn function.
• Experiences are not logged by runEpisode since the experiences are processed as they are

received.
• To speed up training, when calling runEpisode, the CleanupPostSim option is set to false.

Doing so keeps the model compiled between episodes.
• The PlatooningTrainingCurvePlotter object is a helper object to plot training data while the

training is running.
• You can stop the training using a Stop button in the training plot.
• After all the episodes are complete, the cleanup function cleans up the environment and

terminates the model compilation.

Training the policy is a computationally intensive process that can take several minutes to hours to
complete. To save time while running this example, load a pretrained agent by setting doTraining
to false. To train the policy yourself, set doTraining to true.

doTraining = false;
if doTraining
    % Create plotting helper object.
    plotObj = PlatooningTrainingCurvePlotter();

    % Training loop
    for i = 1:maxEpisodes
    
        % Run the episode.
        out = runEpisode(...
            env,policy,...
            MaxSteps=maxSteps,...
            ProcessExperienceFcn=@processExperienceFcn,...
            ProcessExperienceData=processExpData,...
            LogExperiences=false,...
            CleanupPostSim=false);
    
        % Extract episode information for updating the training curves.
        episodeInfo = out.AgentData.EpisodeInfo;
        % Extract updated processExpData for the next episode.
        processExpData = out.AgentData.ProcessExperienceData;
        % Extract the updated policy for the next episode.
        policy = out.AgentData.Agent;
    
        % Extract the critic and actor networks from processExpData.
        critic = processExpData.Critic;
        actor  = processExpData.Actor;

        % Extract the cumulative reward and calculate average reward 
        % per step for this episode.
        cumulativeRwd = episodeInfo.CumulativeReward;
        avgRwdPerStep = cumulativeRwd/episodeInfo.StepsTaken;
    
        % Evaluate q0 from the initial observation of the episode.
        obs0 = episodeInfo.InitialObservation;
        q0 = evaluate(critic,[obs0,evaluate(actor,obs0)]);
        q0 = double(q0{1});
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        % Update the plot.
        update(plotObj,i,avgRwdPerStep,cumulativeRwd,q0);
    
        % Exit training if button pushed.
        if plotObj.StopTraining
            break;
        end
    end

    % Clean up the environment.
    cleanup(env);

    % Save the policy.
    save("PlatooningDDPGPolicy.mat","policy");
else
    % Load the pretrained policy.
    load("PlatooningDDPGPolicy.mat");
end

Validate Trained Policy

Validate the learned policy by running five simulations with random initial conditions specified by the
reset function.
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First, turn off parameter noise in the model.

UseParamNoise = 0;

Simulate the model against the trained policy five times.

N = 5;
simOpts = rlSimulationOptions(...
    MaxSteps=maxSteps, ...
    NumSimulations=N);
experiences = sim(env,policy,simOpts);

Plot the vehicle spacing error, gains, and reward from the experiences output structure.

f = figure(Position=[100 100 1024 768]);
tiledlayout(f,N,3);
for i = 1:N
    % get the spacing
    tspacing = experiences(i).Observation.measurements.Time;
    spacing  = squeeze(experiences(i).Observation.measurements.Data(1:4,:,:));
    % get the gains
    tgains = experiences(i).Action.control_gains.Time;
    gains  = squeeze(experiences(i).Action.control_gains.Data);
    % get the reward
    trwd = experiences(i).Reward.Time;
    rwd  = experiences(i).Reward.Data;

    % plot the spacing
    nexttile
    stairs(tspacing,spacing');
    title(sprintf("Vehicle Spacing Error Simulation %u",i))
    grid on

    % plot the gains
    nexttile
    stairs(tgains,gains');
    title(sprintf("Vehicle Gains Simulation %u",i))
    grid on

    % plot the reward
    nexttile
    stairs(trwd,rwd);
    title(sprintf("Vehicle Reward Simulation %u",i))
    grid on
end
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From the plots, you can see that the trained policy generates adaptive gains that adequately track the
desired spacing for all vehicles.

Local Functions

The process experience function is called every time an experience is processed by the RL Agent
block. Here, processExperienceFcn appends the experience to the replay memory, samples a mini-
batch of experiences from the replay memory, and updates the critic, actor, and target networks.

function [policy,processExpData] = processExperienceFcn(exp,episodeInfo,policy,processExpData)

% Append experience to replay memory buffer.
append(processExpData.ReplayMemory,exp);

% Sample a mini-batch of experiences from replay memory.
miniBatch = sample(processExpData.ReplayMemory, ...
    processExpData.MiniBatchSize,...
    DiscountFactor=processExpData.DiscountFactor);

if ~isempty(miniBatch)
    % Update network parameters using the mini-batch.
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    [processExpData,actorParams] = learnFcn(processExpData,miniBatch);
    
    % Update the policy parameters using the actor parameters.
    policy = setLearnableParameters(policy,actorParams);
end
end

The learnFcn function updates the critic, actor, and target networks given a sampled mini-batch

function [processExpData,actorParams] = learnFcn(processExpData,miniBatch)

% Find the terminal experiences.
doneidx = (miniBatch.IsDone == 1);

% Compute target next actions against the next observations.
nextAction = evaluate(processExpData.TargetActor,miniBatch.NextObservation);

% compute qtarget = reward + gamma*Q(nextObservation,nextAction)
%                 = reward + gamma*expectedFutureReturn
targetq = miniBatch.Reward;

% Bootstrap the target at nonterminal experiences.
expectedFutureReturn = ...
    getValue(processExpData.TargetCritic,miniBatch.NextObservation,nextAction);
targetq(~doneidx) = targetq(~doneidx) + ...
    processExpData.DiscountFactor.*expectedFutureReturn(~doneidx);

% Compute critic gradient using deepCriticLoss function.
criticGradient = gradient(processExpData.Critic,@deepCriticLoss,...
    [miniBatch.Observation,miniBatch.Action],targetq);

% Update the critic parameters.
[processExpData.Critic,processExpData.CriticOptimizer] = update(...
    processExpData.CriticOptimizer,processExpData.Critic,...
    criticGradient);

% Compute the actor gradient using the deepActorGradient function. To
% accelerate the deepActorGradient function, the critic network is
% extracted outside the function and is passed in as a field to the
% actorGradData input struct.
actorGradData.CriticNet = getModel(processExpData.Critic);
actorGradData.MiniBatchSize = processExpData.MiniBatchSize;
actorGradient = customGradient(processExpData.Actor,@deepActorGradient,...
    miniBatch.Observation,actorGradData);

% Update the actor parameters.
[processExpData.Actor,processExpData.ActorOptimizer] = update(...
    processExpData.ActorOptimizer,processExpData.Actor,...
    actorGradient);
actorParams = getLearnableParameters(processExpData.Actor);

% Update targets using the given TargetSmoothFactor hyperparameter.
processExpData.TargetCritic = syncParameters(processExpData.TargetCritic,...
    processExpData.Critic,processExpData.TargetSmoothFactor);
processExpData.TargetActor  = syncParameters(processExpData.TargetActor ,...
    processExpData.Actor ,processExpData.TargetSmoothFactor);
end
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The critic gradient is computed against the deepCriticLoss function.

function loss = deepCriticLoss(q,targetq)
q = q{1};
% Loss is the half mean-square error of q = Q(observation,action)
%against  qtarget
loss = mse(q,reshape(targetq,size(q)));
end

The actor gradient is computed to maximize the expected value of an observation-action pair given
the policy parameters. Here, the negative sign is used to maximize Q with respect to θ.

d
dθ − 1

N∑Qϕ s,a = d
dθ − 1

N∑Qϕ s, πθ s

Here:

• s is the batch observations
• a is the batch actions
• Qϕ is the critic network parameterized by ϕ
• πθ is the actor network parameterized by θ
• N is the mini batch size

function dQdTheta = deepActorGradient(actorNet,observation,gradData)

% Evaluate actions from current observations.
action = forward(actorNet,observation{:});

% Compute: q = Q(s,a)
q = predict(gradData.CriticNet,observation{:},action);

% Compute: qsum = -sum(q)/N to maximize q
qsum = -sum(q,"all")/gradData.MiniBatchSize;

% Compute: d(-sum(q)/N)/dActorParams
dQdTheta = dlgradient(qsum,actorNet.Learnables);
end

The environment reset function varies the initial conditions, reference trajectory, and noise seeds for
every episode.

function in = resetFunction(in)
% Perturb the nominal reference amplitude and frequency.
LeadA = max(2 + 0.1*randn,0.1);
LeadF = max(1 + 0.1*randn,0.1);

% Perturb the nominal spacing.
L = 22 + 3*randn;

% Perturb the initial states.
InitialPositions  = [250 200 150 100 50] + 5*randn(1,5);
InitialVelocities = [10  10  10  10  10] + 1*randn(1,5);

% Update the noise seeds.
ParamNoiseSeed  = randi(100,1,3);
AccelNoiseSeed  = randi(100,1,5) + 100;
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VelNoiseSeed    = randi(100,1,5) + 200;
PosNoiseSeed    = randi(100,1,5) + 300;

% Update the model variables.
in = setVariable(in,"L",L);
in = setVariable(in,"LeadA",LeadA);
in = setVariable(in,"LeadF",LeadF);
in = setVariable(in,"InitialPositions",InitialPositions);
in = setVariable(in,"InitialVelocities",InitialVelocities);
in = setVariable(in,"ParamNoiseSeed",ParamNoiseSeed);
in = setVariable(in,"AccelNoiseSeed",AccelNoiseSeed);
in = setVariable(in,"VelNoiseSeed",VelNoiseSeed);
in = setVariable(in,"PosNoiseSeed",PosNoiseSeed);
end

Create the critic and actor networks.

function [critic,actor] = createNetworks(obsInfo,actInfo)
rng(0);

hiddenLayerSize = 64;

numObs = prod(obsInfo.Dimension);
numAct = prod(actInfo.Dimension);

% Create the critic network.
obsInput = featureInputLayer(numObs, ...
    Normalization="none", ...
    Name=obsInfo.Name);
actInput = featureInputLayer(numAct, ...
    Normalization="none", ...
    Name=actInfo.Name);
catPath = [
    concatenationLayer(1,2,Name="concat")
    fullyConnectedLayer(hiddenLayerSize,Name="fc1")
    reluLayer(Name="relu1")
    fullyConnectedLayer(hiddenLayerSize,Name="fc2")
    reluLayer(Name="relu2")
    fullyConnectedLayer(1,Name="q")];
net = layerGraph();
net = addLayers(net,obsInput);
net = addLayers(net,actInput);
net = addLayers(net,catPath);
net = connectLayers(net,obsInfo.Name,"concat/in1");
net = connectLayers(net,actInfo.Name,"concat/in2");
net = dlnetwork(net);

% Create the critic function approximator.
critic = rlQValueFunction(net,obsInfo,actInfo);
critic = accelerate(critic,true);

% Create the actor network.
scale = (actInfo.UpperLimit - actInfo.LowerLimit)/2;
bias  = actInfo.LowerLimit + scale;
obsPath = [
    featureInputLayer(numObs, ...
        Normalization="none", ...
        Name=obsInfo.Name)
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    fullyConnectedLayer(hiddenLayerSize,Name="fc1")
    reluLayer(Name="relu1")
    fullyConnectedLayer(numAct,Name="fc2")
    reluLayer(Name="relu2")
    fullyConnectedLayer(numAct,Name="fc3")
    tanhLayer(Name="tanh1")
    scalingLayer(Scale=scale,...
        Bias=bias,...
        Name=actInfo.Name)];
net = layerGraph;
net = addLayers(net,obsPath);
net = dlnetwork(net);

% Create the actor function approximator.
actor = rlContinuousDeterministicActor(net,obsInfo,actInfo);
actor = accelerate(actor,true);
end

References
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NY Heidelberg: Springer, 2012.
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Blocks
RL Agent

Related Examples
• “Train Reinforcement Learning Policy Using Custom Training Loop” on page 5-331
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Create Agent for Custom Reinforcement Learning Algorithm
This example shows how to create a custom agent for your own custom reinforcement learning
algorithm. Doing so allows you to leverage the following built-in functionality from the Reinforcement
Learning Toolbox™ software.

• Access to all agent functions, including train and sim
• Visualize training progress using the Episode Manager
• Train agents within a Simulink® environment

In this example, you convert a custom REINFORCE training loop into a custom agent class. For more
information on the REINFORCE custom train loop, see “Train Reinforcement Learning Policy Using
Custom Training Loop” on page 5-331. For more information on writing custom agent classes, see
“Create Custom Reinforcement Learning Agents” on page 3-66.

Fix the random generator seed for reproducibility.

rng(0)

Create Environment

Create the same training environment used in the “Train Reinforcement Learning Policy Using
Custom Training Loop” on page 5-331 example. The environment is a cart-pole balancing
environment with a discrete action space. Create the environment using the rlPredefinedEnv
function.

env = rlPredefinedEnv('CartPole-Discrete');

Extract the observation and action specifications from the environment.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Obtain the number of observations (numObs) and actions (numAct).

numObs = obsInfo.Dimension(1);
numAct = numel(actInfo.Elements);

For more information on this environment, see “Load Predefined Control System Environments” on
page 2-23.

Define Policy

The reinforcement learning policy in this example is a discrete-action stochastic policy. It is
represented by a deep neural network that contains fullyConnectedLayer, reluLayer, and
softmaxLayer layers. This network outputs probabilities for each discrete action given the current
observations. The softmaxLayer ensures that the policy outputs probability values in the range [0
1] and that all probabilities sum to 1.

Create the deep neural network for the actor.

actorNetwork = [featureInputLayer(numObs,'Normalization','none','Name','state')
                fullyConnectedLayer(24,'Name','fc1')
                reluLayer('Name','relu1')
                fullyConnectedLayer(24,'Name','fc2')
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                reluLayer('Name','relu2')
                fullyConnectedLayer(2,'Name','output')
                softmaxLayer('Name','actionProb')];
actorNetwork = dlnetwork(actorNetwork)

actorNetwork = 
  dlnetwork with properties:

         Layers: [7x1 nnet.cnn.layer.Layer]
    Connections: [6x2 table]
     Learnables: [6x3 table]
          State: [0x3 table]
     InputNames: {'state'}
    OutputNames: {'actionProb'}
    Initialized: 1

Create the actor using an rlDiscreteCategoricalActor object.

actor = rlDiscreteCategoricalActor(actorNetwork,obsInfo,actInfo);

Accelerate the gradient computation of the actor.

actor = accelerate(actor,true);

Create the optimizer options and rlOptimizerOptions function.

actorOpts = rlOptimizerOptions('LearnRate',1e-3);

Custom Agent Class

To define your custom agent, first create a class that is a subclass of the rl.agent.CustomAgent
class. The custom agent class for this example is defined in CustomReinforceAgent.m.

The CustomReinforceAgent class has the following class definition, which indicates the agent class
name and the associated abstract agent.

classdef CustomReinforceAgent < rl.agent.CustomAgent

To define your agent you must specify the following:

• Agent properties
• Constructor function
• Critic approximator that estimates the discounted long-term reward (if required for learning)
• Actor that selects an action based on the current observation (if required for learning)
• Required agent methods
• Optional agent methods

Agent Properties

In the properties section of the class file, specify any parameters necessary for creating and
training the agent.

The rl.Agent.CustomAgent class already includes properties for the agent sample time
(SampleTime) and the action and observation specifications (ActionInfo and ObservationInfo,
respectively).
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The custom REINFORCE agent defines the following additional agent properties.

properties
    % Actor
    Actor
    ActorOptimizer
    
    % Agent options
    Options
    
    % Experience buffer
    ObservationBuffer
    ActionBuffer
    RewardBuffer
end

properties (Access = private)
    % Training utilities
    Counter
    NumObservation
    NumAction
end

Constructor Function

To create your custom agent, you must define a constructor function. The constructor function
performs the following actions.

• Defines the action and observation specifications. For more information about creating these
specifications, see rlNumericSpec and rlFiniteSetSpec.

• Sets the agent properties.
• Calls the constructor of the base abstract class.
• Defines the sample time (required for training in Simulink environments).

For example, the CustomREINFORCEAgent constructor defines action and observation spaces based
on the input actor.

function obj = CustomReinforceAgent(Actor,Options)
    %CUSTOMREINFORCEAGENT Construct custom agent
    %   AGENT = CUSTOMREINFORCEAGENT(ACTOR,OPTIONS) creates custom
    %   REINFORCE AGENT from rlStochasticActorRepresentation ACTOR
    %   and structure OPTIONS. OPTIONS has fields:
    %       - DiscountFactor
    %       - MaxStepsPerEpisode
    
    % (required) Call the abstract class constructor.
    obj = obj@rl.agent.CustomAgent();
    obj.ObservationInfo = Actor.ObservationInfo;
    obj.ActionInfo = Actor.ActionInfo;
    
    % (required for Simulink environment) Register sample time. 
    % For MATLAB environment, use -1.
    obj.SampleTime = -1;
    
    % (optional) Register actor and agent options.
    obj.Actor = Actor;
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    obj.Options = Options;
    obj.ActorOptimizer = rlOptimizer(Options.OptimizerOptions);
    
    % (optional) Cache the number of observations and actions.
    obj.NumObservation = prod(obj.ObservationInfo.Dimension);
    obj.NumAction = prod(obj.ActionInfo.Dimension);
    
    % (optional) Initialize buffer and counter.
    resetImpl(obj);
end

Required Functions

To create a custom reinforcement learning agent you must define the following implementation
functions.

• getActionImpl — Evaluate agent policy and select an agent during simulation.
• getActionWithExplorationImpl — Evaluate policy and select an action with exploration

during training.
• learnImpl — How the agent learns from the current experience

To call these functions in your own code, use the wrapper methods from the abstract base class. For
example, to call getActionImpl, use getAction. The wrapper methods have the same input and
output arguments as the implementation methods.

getActionImpl Function

The getActionImpl function is used to evaluate the policy of your agent and select an action when
simulating the agent using the sim function. This function must have the following signature, where
obj is the agent object, Observation is the current observation, and Action is the selected action.

function Action = getActionImpl(obj,Observation)

For the custom REINFORCE agent, you select an action by calling the getAction function for the
actor. The discrete rlStochasticActorRepresentation generates a discrete distribution from an
observation and samples an action from this distribution.

function Action = getActionImpl(obj,Observation)
    % Compute an action using the policy given the current 
    % observation.
    
    Action = getAction(obj.Actor,Observation);
end

getActionWithExplorationImpl Function

The getActionWithExplorationImpl function selects an action using the exploration model of
your agent when training the agent using the train function. Using this function you can implement
exploration techniques such as epsilon-greedy exploration or the addition of Gaussian noise. This
function must have the following signature, where obj is the agent object, Observation is the
current observation, and Action is the selected action.

function Action = getActionWithExplorationImpl(obj,Observation)

For the custom REINFORCE agent, the getActionWithExplorationImpl function is the same as
getActionImpl. By default, stochastic actors always explore, that is, they always select an action
based on a probability distribution.
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function Action = getActionWithExplorationImpl(obj,Observation)
    % Compute an action using the exploration policy given the  
    % current observation.
    
    % REINFORCE: Stochastic actors always explore by default
    % (sample from a probability distribution)
    Action = getAction(obj.Actor,Observation);
end

learnImpl Function

The learnImpl function defines how the agent learns from the current experience. This function
implements the custom learning algorithm of your agent by updating the policy parameters and
selecting an action with exploration for the next state. This function must have the following
signature, where obj is the agent object, Experience is the current agent experience, and Action
is the selected action.

function Action = learnImpl(obj,Experience)

The agent experience is the cell array Experience =
{state,action,reward,nextstate,isdone}. Here:

• state is the current observation.
• action is the current action. This is different from the output argument Action, which is an

action for the next state.
• reward is the current reward.
• nextState is the next observation.
• isDone is a logical flag indicating that the training episode is complete.

For the custom REINFORCE agent, replicate steps 2 through 7 of the custom training loop in “Train
Reinforcement Learning Policy Using Custom Training Loop” on page 5-331. You omit steps 1, 8, and
9 since you will use the built-in train function to train your agent.

function Action = learnImpl(obj,Experience)
    % Define how the agent learns from an Experience, which is a
    % cell array with the following format.
    %   Experience = {observation,action,reward,nextObservation,isDone}
    
    % Reset buffer at the beginning of the episode.
    if obj.Counter < 2
        resetBuffer(obj);
    end
    
    % Extract data from experience.
    Obs = Experience{1};
    Action = Experience{2};
    Reward = Experience{3};
    NextObs = Experience{4};
    IsDone = Experience{5};
    
    % Save data to buffer.
    obj.ObservationBuffer(:,:,obj.Counter) = Obs{1};
    obj.ActionBuffer(:,:,obj.Counter) = Action{1};
    obj.RewardBuffer(:,obj.Counter) = Reward;
    
    if ~IsDone
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        % Choose an action for the next state.
        
        Action = getActionWithExplorationImpl(obj, NextObs);
        obj.Counter = obj.Counter + 1;
    else
        % Learn from episodic data.
        
        % Collect data from the buffer.
        BatchSize = min(obj.Counter,obj.Options.MaxStepsPerEpisode);
        ObservationBatch = obj.ObservationBuffer(:,:,1:BatchSize);
        ActionBatch = obj.ActionBuffer(:,:,1:BatchSize);
        RewardBatch = obj.RewardBuffer(:,1:BatchSize);
        
        % Compute the discounted future reward.
        DiscountedReturn = zeros(1,BatchSize);
        for t = 1:BatchSize
            G = 0;
            for k = t:BatchSize
                G = G + obj.Options.DiscountFactor ^ (k-t) * RewardBatch(k);
            end
            DiscountedReturn(t) = G;
        end
        
        % Organize data to pass to the loss function.
        LossData.batchSize = BatchSize;
        LossData.actInfo = obj.ActionInfo;
        LossData.actionBatch = ActionBatch;
        LossData.discountedReturn = DiscountedReturn;
        
        % Compute the gradient of the loss with respect to the
        % actor parameters.
        ActorGradient = gradient(obj.Actor,@lossFunction,...
            {ObservationBatch},LossData);
        
        % Update the actor parameters using the computed gradients.
        obj.Actor = optimize(obj.Actor,ActorGradient);
        
        % Reset the counter.
        obj.Counter = 1;
    end
end

The actor computes gradient of loss with respect to parameters, which the loss function is
implemented as a local function lossFunction in CustomREINFORCEAgent.m.

function loss = lossFunction(policy,lossData)

    policy = policy{1};
    % Create the action indication matrix.
    batchSize = lossData.batchSize;
    Z = repmat(lossData.actInfo.Elements',1,batchSize);
    actionIndicationMatrix = lossData.actionBatch(:,:) == Z;
    
    % Resize the discounted return to the size of policy.
    G = actionIndicationMatrix .* lossData.discountedReturn;
    G = reshape(G,size(policy));
    
    % Round any policy values less than eps to eps.
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    policy(policy < eps) = eps;
    
    % Compute the loss.
    loss = -sum(G .* log(policy),'all');
    
end

Optional Functions

Optionally, you can define how your agent is reset at the start of training by specifying a resetImpl
function with the following function signature, where obj is the agent object.

function resetImpl(obj)

Using this function, you can set the agent into a know or random condition before training.

function resetImpl(obj)
    % (Optional) Define how the agent is reset before training/
    
    resetBuffer(obj);
    obj.Counter = 1;
end

Also, you can define any other helper functions in your custom agent class as required. For example,
the custom REINFORCE agent defines a resetBuffer function for reinitializing the experience
buffer at the beginning of each training episode.

function resetBuffer(obj)
    % Reinitialize all experience buffers.
    
    obj.ObservationBuffer = zeros(obj.NumObservation,1,obj.Options.MaxStepsPerEpisode);
    obj.ActionBuffer = zeros(obj.NumAction,1,obj.Options.MaxStepsPerEpisode);
    obj.RewardBuffer = zeros(1,obj.Options.MaxStepsPerEpisode);
end

Create Custom Agent

Once you have defined your custom agent class, create an instance of it in the MATLAB workspace.
To create the custom REINFORCE agent, first specify the agent options.

options.MaxStepsPerEpisode = 250;
options.DiscountFactor = 0.995;
options.OptimizerOptions = actorOpts;

Then, using the options and the previously defined actor, call the custom agent constructor function.

agent = CustomReinforceAgent(actor,options);

Train Custom Agent

Configure the training to use the following options.

• Set up the training to last at most 5000 episodes, with each episode lasting at most 250 steps.
• Terminate the training after the maximum number of episodes is reached or when the average

reward across 100 episodes reaches a value of 240.

For more information, see rlTrainingOptions.
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numEpisodes = 5000;
aveWindowSize = 100;
trainingTerminationValue = 220;
trainOpts = rlTrainingOptions(...
    'MaxEpisodes',numEpisodes,...
    'MaxStepsPerEpisode',options.MaxStepsPerEpisode,...
    'ScoreAveragingWindowLength',aveWindowSize,...
    'StopTrainingValue',trainingTerminationValue);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
    % Train the agent.
    trainStats = train(agent,env,trainOpts);
else
    % Load pretrained agent for the example.
    load('CustomReinforce.mat','agent');
end

Simulate Custom Agent

Enable the environment visualization, which is updated each time the environment step function is
called.

 Create Agent for Custom Reinforcement Learning Algorithm

5-359



plot(env)

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOpts = rlSimulationOptions('MaxSteps',options.MaxStepsPerEpisode);
experience = sim(env,agent,simOpts);

See Also
train

More About
• “Create Custom Reinforcement Learning Agents” on page 3-66
• “Train Reinforcement Learning Agents” on page 5-3
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Train MBPO Agent to Balance Cart-Pole System
This example shows how to train a model-based policy optimization (MBPO) agent to balance a cart-
pole system modeled in MATLAB®. For more information on MBPO agents, see “Model-Based Policy
Optimization Agents” on page 3-60.

MBPO agents use an environment model to generate more experiences while training a base agent.
In this example, the base agent is a soft actor-critic (SAC) agent.

The build-int MBPO agent is based on a model-based policy optimization algorithm in [1]. The original
MBPO algorithm trains an ensemble of stochastic models. In contrast, this example trains an
ensemble of deterministic models.

The following figure summarizes the algorithm used in this example. During training the MBPO agent
collects real experiences resulting from interactions with the environment. The MBPO agent uses
these experiences to train its internal environment model. Then, it uses this model to generate
experiences without interacting with the actual environment Finally, the MBPO agent uses the real
experiences and generated experiences to train the SAC base agent.

Cart-Pole MATLAB Environment

For this example, the reinforcement learning environment is a pole attached to an unactuated
revolutionary joint on a cart. The cart has an actuated prismatic joint connected to a one-dimensional
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frictionless track. The training goal in this environment is to balance the pole by applying forces
(actions) to the prismatic joint.

For this environment:

• The upward balanced pendulum position is 0 radians and the downward hanging position is pi
radians.

• The pendulum starts upright with an initial angle between –0.05 and 0.05 radians.
• The force action signal from the agent to the environment is from –10 to 10 N.
• The observations from the environment are the position and velocity of the cart, the pendulum

angle, and the pendulum angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical or if the cart moves more

than 2.4 m from the original position.
• A reward of +1 is provided for every time-step that the pole remains upright. A penalty of –50 is

applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
23.

Create a predefined environment interface for the cart-pole system.

env = rlPredefinedEnv("CartPole-Continuous");

The interface has a continuous action space where the agent can apply one force value ranging from
–10 N to 10 N.

Obtain the observation and action specifications from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)
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Create MBPO Agent

An MBPO agent decides which action to take given observations using a base off-policy agent. The
MBPO agent trains both the base agent and an environmental model. The environmental model
consists of transition functions, a reward function, and an is-done function. This model is used to
create more samples without interacting with an environment. This example uses the following steps
to construct an MBPO agent.

1 Define model-free off-policy agent
2 Define transition models
3 Define reward model
4 Define is-done model
5 Create neural network environment
6 Create MBPO agent

1. Define Model-Free Off-Policy Agent

Create a SAC base agent with a default network structure. For more information on SAC agents, see
“Soft Actor-Critic Agents” on page 3-55. For an environment with a continuous action space, you can
also use a DDPG or TD3 base agent. For discrete environments, you can use a DQN base agent.

agentOpts = rlSACAgentOptions;
agentOpts.MiniBatchSize = 256;
initOpts = rlAgentInitializationOptions("NumHiddenUnit",64);
baseagent = rlSACAgent(obsInfo,actInfo,initOpts,agentOpts);
baseagent.AgentOptions.ActorOptimizerOptions.LearnRate = 1e-4;
baseagent.AgentOptions.CriticOptimizerOptions(1).LearnRate = 1e-4;
baseagent.AgentOptions.CriticOptimizerOptions(2).LearnRate = 1e-4;

2. Define Transition Models

To model the environment, an MBPO agent trains one or more transition models. To model an
environment effectively, you must consider two kinds of uncertainty: statistical uncertainty and
modeling uncertainty. A stochastic transition function can model the statistical uncertainty better
than a deterministic transition function. In this example, since the cart-pole environment is
deterministic, you use deterministic transition functions.

It is challenging to have a perfect model, and a trained model usually has modeling uncertainty. One
common approach to overcoming modeling uncertainty is to use multiple transition models. The
original MBPO paper uses seven models [1]. For this example, to reduce computational cost, you use
three models. The MBPO agent generates experiences using all three transition models. The
following figure shows how an ensemble of transition models generates samples without interacting
with the environment. In this figure, the models generate two trajectories with horizon = 2.
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Create three deterministic transition functions. To do so, create a deep neural network using the
createDeterministicTransitionNetwork helper function. Then, use the neural network to
create an rlContinuousDeterministicTransitionFunction object. When creating a transition
function object, you must specify the action and observation input/output names for the neural
network.

net1 = createDeterministicTransitionNetwork(4,1);
transitionFcn = rlContinuousDeterministicTransitionFunction(net1,obsInfo,actInfo,...
    ObservationInputNames="state",...
    ActionInputNames="action",...
    NextObservationOutputNames="nextObservation");

net2 = createDeterministicTransitionNetwork(4,1);
transitionFcn2 = rlContinuousDeterministicTransitionFunction(net2,obsInfo,actInfo,...
    ObservationInputNames="state",...
    ActionInputNames="action",...
    NextObservationOutputNames="nextObservation");

net3 = createDeterministicTransitionNetwork(4,1);
transitionFcn3 = rlContinuousDeterministicTransitionFunction(net3,obsInfo,actInfo,...
    ObservationInputNames="state",...
    ActionInputNames="action",...
    NextObservationOutputNames="nextObservation");

3. Define Reward Model

An MBPO agent also contains a reward model for the environment. If you know a ground-truth
reward function, you can specify it using a custom function. In this example, the ground-truth reward
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function is defined in the cartPoleRewardFunction helper function. To use this reward function
set useGroundTruthReward to true.

You can also specify a neural network-based reward function that the MBPO agent can train. In this
example, you can use such a reward function by setting useGroundTruthReward to false. The
deep neural network for the reward function is defined in the
createRewardNetworkActionNextObs helper function. To define an is-done function using the
neural network, create an rlContinuousDeterministicRewardFunction object.

useGroundTruthReward = true;
if useGroundTruthReward
    rewardFcn = @cartPoleRewardFunction;
else
    % This neural network uses action and next observation as inputs.
    rewardnet = createRewardNetworkActionNextObs(4,1);
    rewardFcn = rlContinuousDeterministicRewardFunction(rewardnet,obsInfo,actInfo, ...
        ActionInputNames="action",...
        NextObservationInputNames="nextState");
end

4. Define Is-Done Model

An MBPO agent also contains an is-done model for computing the termination signal for the
environment. If you know a ground-truth termination signal, you can specify it using a custom
function. In this example, the ground-truth termination signal is defined in the
cartPoleIsDoneFunction helper function. To use this reward function set
useGroundTruthIsDone to true.

You can also specify a neural network-based is-done function that the MBPO agent can train. In this
example, you can use such an is-done function by setting useGroundTruthIsDone to false. The
deep neural network for the is-done function is defined in the createIsDoneNetwork helper
function. To define an is-done function using the neural network, create an rlIsDoneFunction
object.

useGroundTruthIsDone = true;
if useGroundTruthIsDone
    isdoneFcn = @cartPoleIsDoneFunction;
else
    % This neural network uses only next obesrvation as inputs.
    isdoneNet = createIsDoneNetwork(4);
    isdoneFcn = rlIsDoneFunction(isdoneNet,obsInfo,actInfo, ...
        NextObservationInputNames="nextState");    
end

5. Create Neural Network Environment

Define a neural network environment using the transition, reward, and is-done functions. To do so,
create an rlNeuralNetworkEnvironment object.

generativeEnv = rlNeuralNetworkEnvironment(obsInfo,actInfo, ...
    [transitionFcn,transitionFcn2,transitionFcn3],rewardFcn,isdoneFcn);
% Reset model environment.
reset(generativeEnv);
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6. Create MBPO Agent

Define an MBPO agent using the base off-policy agent and environment model. To do so, first create
an MBPO agent options object.

MBPOAgentOpts = rlMBPOAgentOptions;

Specify options for training the environment model. Train the model for 1 epoch at the beginning of
each episode and use 15 min-batches of size 256.

MBPOAgentOpts.NumEpochForTrainingModel = 1;
MBPOAgentOpts.NumMiniBatches = 15;
MBPOAgentOpts.MiniBatchSize = 256;

Specify the size of the model experience buffer.

MBPOAgentOpts.ModelExperienceBufferLength = 10000;

Specify the ratio of real and generated experience used to train the base SAC agent. For this
example, 20% of samples are from the real experience buffer and 80% of samples are from model
experience buffer.

MBPOAgentOpts.RealSampleRatio = 0.2;

Specify options for generating samples using the environment model.

• Generate 2000 trajectories at the beginning of each epoch.
• Use a piecewise roll-out horizon schedule, which increases the horizon length gradually..
• Increase the horizon length every 100 epochs.
• Use an initial horizon length of 1.
• Use a maximum horizon length of 3.

MBPOAgentOpts.ModelRolloutOptions.NumRollout = 2000;
MBPOAgentOpts.ModelRolloutOptions.HorizonUpdateSchedule = "piecewise";
MBPOAgentOpts.ModelRolloutOptions.HorizonUpdateFrequency = 100;
MBPOAgentOpts.ModelRolloutOptions.Horizon = 1;
MBPOAgentOpts.ModelRolloutOptions.HorizonMax = 3;

Specify optimizer options for training the transition models. Use the same optimizer options for all
three transition models.

transitionOptimizerOptions1 = rlOptimizerOptions(...
    LearnRate=1e-4,...
    GradientThreshold=1.0);
transitionOptimizerOptions2 = rlOptimizerOptions(...
    LearnRate=1e-4,...
    GradientThreshold=1.0);
transitionOptimizerOptions3 = rlOptimizerOptions(...
    LearnRate=1e-4,...
    GradientThreshold=1.0);
MBPOAgentOpts.TransitionOptimizerOptions = ...
    [transitionOptimizerOptions1,transitionOptimizerOptions2,transitionOptimizerOptions3];

Specify optimizer options for training the reward model. If you use a custom ground-truth reward
function, the agent ignores these options.
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rewardOptimizerOptions = rlOptimizerOptions(...
    LearnRate=1e-4,...
    GradientThreshold=1.0);
MBPOAgentOpts.RewardOptimizerOptions = rewardOptimizerOptions;

Specify optimizer options for training the is-done model. If you use a custom ground-truth reward
function, the agent ignores these options.

isdoneOptimizerOptions = rlOptimizerOptions(...
    LearnRate=1e-4,...
    GradientThreshold=1.0);
MBPOAgentOpts.IsDoneOptimizerOptions = isdoneOptimizerOptions;

Create the MBPO agent, specifying the base agent, environment model, and options.

agent = rlMBPOAgent(baseagent,generativeEnv,MBPOAgentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training episode for at most 1000 episodes, with each episode lasting at most 300 time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 270 over 5
consecutive episodes. At this point, the agent can balance the pendulum in the upright position.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
    MaxEpisodes=1000, ...
    MaxStepsPerEpisode=300, ...
    Verbose=false, ...
    Plots="training-progress",...
    StopTrainingCriteria="AverageReward",...
    StopTrainingValue=270,...
    ScoreAveragingWindowLength=5); 

You can visualize the cart-pole system by using the plot function during training or simulation.

plot(env)
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Train the agent using the train function. Training this agent is a computationally-intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('MATLABCartpoleMBPO.mat','agent');
end
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Simulate MBPO Agent

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim.

rng(1)
simOptions = rlSimulationOptions(MaxSteps=300);
experience = sim(env,agent,simOptions);
totalReward_MBPO = sum(experience.Reward)

totalReward_MBPO = 289.3902

Instead of simulating the MBPO agent, you can simulate the base agent. If you use the same random
seed, you get the same result as simulating the MBPO agent.

rng(1)
experience = sim(env,agent.BaseAgent,simOptions);
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totalReward_SAC = sum(experience.Reward)

totalReward_SAC = 289.3902

Evaluate Learned Environment Model

To validate the trained environment transition models, you can check whether they are able to
correctly predict the next observations. Similarly, you can validate the performance of the reward and
is-done functions. To make a prediction based on the environment model, use the step function.

For this example, evaluate the performance of the first transition model.

agent.EnvModel.TransitionModelNum = 1;

For each simulation step, extract the actual next observation

numSteps = length(experience.Reward.Data);
nextObsPrediction = zeros(4,1,numSteps);
rewardPrediction = zeros(1,numSteps);
isdonePrediction = zeros(1,numSteps);
nextObsGroundTruth = zeros(4,1,numSteps);
rewardGroundTruth = zeros(1,numSteps);
isdoneGroundTruth = zeros(1,numSteps);
for stepCt = 1:numSteps
    % Extract the actual next observation, reward, and is-done value.
    nextObsGroundTruth(:,:,stepCt) = ...
        experience.Observation.CartPoleStates.Data(:,:,stepCt+1);
    rewardGroundTruth(:, stepCt) = experience.Reward.Data(stepCt);
    isdoneGroundTruth(:, stepCt) = experience.IsDone.Data(stepCt);

    % Predict the next observation, reward, and is-done value using the
    % environment model.
    obs = experience.Observation.CartPoleStates.Data(:,:,stepCt);
    agent.EnvModel.Observation = {obs};
    action = experience.Action.CartPoleAction.Data(:,:,stepCt);
    [nextObs,reward,isdone] = step(agent.EnvModel,{action});

    nextObsPrediction(:,:,stepCt) = nextObs{1};
    rewardPrediction(:,stepCt) = reward;
    isdonePrediction(:,stepCt) = isdone;
end

5 Train and Validate Agents

5-370



Plot the ground truth and prediction of the first observation dimension.

figure
subplot(2,2,1)
plot(reshape(nextObsGroundTruth(1,:,:),1,numSteps))
hold on
plot(reshape(nextObsPrediction(1,:,:),1,numSteps))
hold off
xlabel('Step')
ylabel('Observation')
legend('GroundTruth','Prediction','Location','southwest')

Plot the ground truth and prediction of the second observation dimension.

subplot(2,2,2)
plot(reshape(nextObsGroundTruth(2,:,:),1,numSteps))
hold on
plot(reshape(nextObsPrediction(2,:,:),1,numSteps))
hold off
xlabel('Step')
ylabel('Observation')

Plot the ground truth and prediction of the third observation dimension.

subplot(2,2,3)
plot(reshape(nextObsGroundTruth(3,:,:),1,numSteps))
hold on
plot(reshape(nextObsPrediction(3,:,:),1,numSteps))
hold off
xlabel('Step')
ylabel('Observation')

Plot the ground truth and prediction of the fourth observation dimension.

subplot(2,2,4)
plot(reshape(nextObsGroundTruth(4,:,:),1,numSteps))
hold on
plot(reshape(nextObsPrediction(4,:,:),1,numSteps))
hold off
xlabel('Step')
ylabel('Observation')
sgtitle('Next Observation Prediction')
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See Also
rlMBPOAgent | rlMBPOAgentOptions | rlNeuralNetworkEnvironment

Related Examples
• “Model-Based Policy Optimization Agents” on page 3-60

5 Train and Validate Agents

5-372



Model-Based Reinforcement Learning Using Custom Training
Loop

This example shows how to define a custom training loop for a model-based reinforcement learning
(MBRL) algorithm. You can use this workflow to train an MBRL policy with your custom training
algorithm using policy and value function representations from Reinforcement Learning Toolbox™
software.

In this example, you use transition models to generate more experiences while training a custom
DQN [2] agent in a cart-pole environment. The algorithm used in this example is based on a model-
based policy optimization algorithm (MBPO) [1]. The original MBPO algorithm trains an ensemble of
stochastic models and a soft actor-critic (SAC) agent in tasks with continuous actions. In contrast,
this example trains an ensemble of deterministic models and a DQN agent in a task with discrete
actions. The following figure summarizes the algorithm used in this example.

The agent generates real experiences by interacting with the environment. These experiences are
used to train a set of transition models, which are used to generate additional experiences. The
training algorithm then uses both the real and generated experiences to update the agent policy.
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Create Environment

For this example, a reinforcement learning policy is trained in a discrete cart-pole environment. The
objective in this environment is to balance the pole by applying forces (actions) on the cart. Create
the environment using the rlPredefinedEnv function. Fix the random generator seed for
reproducibility. For more information on this environment, see “Load Predefined Control System
Environments” on page 2-23.

clear
clc
rngSeed = 1;
rng(rngSeed);
env = rlPredefinedEnv('CartPole-Discrete');

Extract the observation and action specifications from the environment.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Obtain the number of observations (numObservations) and actions (numActions).

numObservations = obsInfo.Dimension(1);
numActions = numel(actInfo.Elements); % number of discrete actions, -10 or 10
numContinuousActions = 1; % force

Critic Construction

DQN is a value-based reinforcement learning algorithm that estimates the discounted cumulative
reward using a critic. In this example, the critic network contains fullyConnectedLayer, and
reluLayer layers.

qNetwork = [
    featureInputLayer(obsInfo.Dimension(1),'Normalization','none','Name','state')
    fullyConnectedLayer(24,'Name','CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(24, 'Name','CriticStateFC2')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(length(actInfo.Elements),'Name','output')];
qNetwork = dlnetwork(qNetwork);

Create the critic representation using the specified neural network and options. For more
information, see rlQValueRepresentation.

criticOpts = rlRepresentationOptions('LearnRate',0.001,'GradientThreshold',1);
critic = rlQValueRepresentation(qNetwork,obsInfo,actInfo,'Observation',{'state'},criticOpts);

Create Transition Models

Model-based reinforcement learning uses transition models of the environment. The model usually
consists of a transition function, a reward function, and a terminal state function.

• The transition function predicts the next observation given the current observation and the action.
• The reward function predicts the reward given the current observation, the action, and the next

observation.
• The terminal state function predicts the terminal state given the observation.
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As shown in the following figure, this example uses three transition functions as an ensemble of
transition models to generate samples without interacting with the environment. The true reward
function and the true terminal state function are given in this example.

Define three neural networks for transition models. The neural network predicts the difference
between the next observation and the current observation

numModels = 3;
transitionNetwork1 = createTransitionNetwork(numObservations, numContinuousActions);
transitionNetwork2 = createTransitionNetwork(numObservations, numContinuousActions);
transitionNetwork3 = createTransitionNetwork(numObservations, numContinuousActions);
transitionNetworkVector = [transitionNetwork1, transitionNetwork2, transitionNetwork3];
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Create Experience Buffers

Create an experience buffer for storing agent experiences (observation, action, next observation,
reward, and isDone).

myBuffer.bufferSize = 1e5;
myBuffer.bufferIndex = 0;
myBuffer.currentBufferLength = 0;
myBuffer.observation = zeros(numObservations,myBuffer.bufferSize);
myBuffer.nextObservation = zeros(numObservations,myBuffer.bufferSize);
myBuffer.action = zeros(numContinuousActions,1,myBuffer.bufferSize);
myBuffer.reward = zeros(1,myBuffer.bufferSize);
myBuffer.isDone = zeros(1,myBuffer.bufferSize);

Create a model experience buffer for storing the experiences generated by the models.

myModelBuffer.bufferSize = 1e5;
myModelBuffer.bufferIndex = 0;
myModelBuffer.currentBufferLength = 0;
myModelBuffer.observation = zeros(numObservations,myModelBuffer.bufferSize);
myModelBuffer.nextObservation = zeros(numObservations,myModelBuffer.bufferSize);
myModelBuffer.action = zeros(numContinuousActions,myModelBuffer.bufferSize);
myModelBuffer.reward = zeros(1,myModelBuffer.bufferSize);
myModelBuffer.isDone = zeros(1,myModelBuffer.bufferSize);

Configure Training

Configure the training to use the following options.

• Maximum number of training episodes — 250
• Maximum steps per training episode — 500
• Discount factor — 0.99
• Training termination condition — Average reward across 10 episodes reaches the value of 480

numEpisodes = 250;
maxStepsPerEpisode = 500;
discountFactor = 0.99;
aveWindowSize = 10;
trainingTerminationValue = 480;

Configure the model options.

• Train transition models only after 2000 samples are collected.
• Train the models using all experiences in the real experience buffer in each episode. Use a mini-

batch size of 256.
• The models generates trajectories with a length of 4 at the beginning of each episode.
• The number of generated trajectories is numGenerateSampleIteration x numModels x

miniBatchSize = 20 x 3 x 256 = 15360.
• Use the same epsilon-greedy parameters as the DQN agent, except for the minimum epsilon value.
• Use a minimum epsilon value of 0.1, which is higher than the value used for interacting with the

environment. Doing so allows the model to generate more diverse data.

warmStartSamples = 2000;
numEpochs = 1;
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miniBatchSize = 256;
horizonLength = 4;
epsilonMinModel = 0.1;
numGenerateSampleIteration = 20;
sampleGenerationOptions.horizonLength = horizonLength;
sampleGenerationOptions.numGenerateSampleIteration = numGenerateSampleIteration;
sampleGenerationOptions.miniBatchSize = miniBatchSize;
sampleGenerationOptions.numObservations = numObservations;
sampleGenerationOptions.epsilonMinModel = epsilonMinModel;

% optimizer options
velocity1 = [];
velocity2 = [];
velocity3 = [];
decay = 0.01;
momentum = 0.9;
learnRate = 0.0005;

Configure the DQN training options.

• Use the epsilon greedy algorithm with an initial epsilon value is 1, a minimum value of 0.01, and a
decay rate of 0.005.

• Update the target network every 4 steps.
• Set the ratio of the real experiences to generated experiences to 0.2:0.8 by setting RealRatio to

0.2. Setting RealRatio to 1.0 is the same as the model-free DQN.
• Take 5 gradient steps at each environment step.

epsilon = 1;
epsilonMin = 0.01;
epsilonDecay = 0.005;
targetUpdateFrequency = 4;
realRatio = 0.2; % Set to 1 to run a standard DQN
numGradientSteps = 5;

Create a vector for storing the cumulative reward for each training episode.

episodeCumulativeRewardVector = [];

Create a figure for model training visualization using the hBuildFigureModel helper function.

[trainingPlotModel, lineLossTrain1, lineLossTrain2, lineLossTrain3, axModel] = hBuildFigureModel();

Create a figure for model validation visualization using the hBuildFigureModelTest helper
function.

[testPlotModel, lineLossTest1, axModelTest] = hBuildFigureModelTest();

Create a figure for DQN agent training visualization using the hBuildFigure helper function.

[trainingPlot,lineReward,lineAveReward, ax] = hBuildFigure;

Train Agent

Train the agent using a custom training loop. The training loop uses the following algorithm. For each
episode:

1 Train the transition models.
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2 Generate experiences using the transition models and store the samples in the model experience
buffer.

3 Generate a real experience. To do so, generate an action using the policy, apply the action to the
environment, and obtain the resulting observation, reward, and is-done values.

4 Create a mini-batch by sampling experiences from both the experience buffer and the model
experience buffer.

5 Compute the target Q value.
6 Compute the gradient of the loss function with respect to the critic representation parameters.
7 Update the critic representation using the computed gradients.
8 Update the training visualization.
9 Terminate training if the critic is sufficiently trained.

targetCritic = critic;
modelTrainedAtleastOnce = false;
totalStepCt = 0;
start = tic;

set(trainingPlotModel,'Visible','on');
set(testPlotModel,'Visible','on');
set(trainingPlot,'Visible','on');

for episodeCt = 1:numEpisodes
    if myBuffer.currentBufferLength > miniBatchSize && ...
            totalStepCt > warmStartSamples
        if realRatio < 1.0
            %----------------------------------------------
            % 1. Train transition models.
            %----------------------------------------------
            % Training three transition models
            [transitionNetworkVector(1),loss1,velocity1] = ...
                trainTransitionModel(transitionNetworkVector(1),...
                myBuffer,velocity1,miniBatchSize,...
                numEpochs,momentum,learnRate);
            [transitionNetworkVector(2),loss2,velocity2] = ...
                trainTransitionModel(transitionNetworkVector(2),...
                myBuffer,velocity2,miniBatchSize,...
                numEpochs,momentum,learnRate);
            [transitionNetworkVector(3),loss3,velocity3] = ...
                trainTransitionModel(transitionNetworkVector(3),...
                myBuffer,velocity3,miniBatchSize,...
                numEpochs,momentum,learnRate);
            modelTrainedAtleastOnce = true;

            % Display the training progress
            d = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain1,episodeCt,loss1)
            addpoints(lineLossTrain2,episodeCt,loss2)
            addpoints(lineLossTrain3,episodeCt,loss3)
            legend(axModel,'Model1','Model2','Model3');
            title(axModel,"Model Training Progress - Episode: "...
                + episodeCt + ", Elapsed: " + string(d))
            drawnow

            %----------------------------------------------
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            % 2. Generate experience using models.
            %----------------------------------------------
            % Create numGenerateSampleIteration x horizonLength x numModels x miniBatchSize
            % ex) 20 x 4 x 3 x 256 = 61440 samples            
            myModelBuffer = generateSamples(myBuffer,myModelBuffer,...
                transitionNetworkVector,critic,actInfo,...
                epsilon,sampleGenerationOptions);
        end
    end

    %----------------------------------------------
    % Interact with environment and train agent.
    %----------------------------------------------
    % Reset the environment at the start of the episode
    observation = reset(env);
    episodeReward = zeros(maxStepsPerEpisode,1);
    errorPreddiction = zeros(maxStepsPerEpisode,1);

    for stepCt = 1:maxStepsPerEpisode
        %----------------------------------------------
        % 3. Generate an experience.
        %----------------------------------------------
        totalStepCt = totalStepCt + 1;

        % Compute an action using the policy based on the current observation.
        if rand() < epsilon
            action = actInfo.usample;
            action = action{1};
        else
            action = getAction(critic,{observation});
        end
        % Udpate epsilon
        if totalStepCt > warmStartSamples
            epsilon = max(epsilon*(1-epsilonDecay),epsilonMin);
        end

        % Apply the action to the environment and obtain the resulting
        % observation and reward.
        [nextObservation,reward,isDone] = step(env,action);

        % Check prediction
        dx = predict(transitionNetworkVector(1),...
            dlarray(observation,'CB'),dlarray(action,'CB'));
        predictedNextObservation = observation + dx;
        errorPreddiction(stepCt) = ...
            sqrt(sum((nextObservation - predictedNextObservation).^2));

        % Store the action, observation, reward and is-done experience  
        myBuffer = storeExperience(myBuffer,observation,action,...
            nextObservation,reward,isDone);

        episodeReward(stepCt) = reward;
        observation = nextObservation;

        % Train DQN agent
        for gradientCt = 1:numGradientSteps
            if myBuffer.currentBufferLength >= miniBatchSize && ...
                    totalStepCt>warmStartSamples
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               %-----------------------------------------------------
               % 4. Sample minibatch from experience buffers.
               %-----------------------------------------------------
               [sampledObservation,sampledAction,sampledNextObservation,sampledReward,sampledIsdone] = ...
                   sampleMinibatch(modelTrainedAtleastOnce,realRatio,miniBatchSize,myBuffer,myModelBuffer); 

               %-----------------------------------------------------
               % 5. Compute target Q value.
               %-----------------------------------------------------
                % Compute target Q value
                [targetQValues, MaxActionIndices] = getMaxQValue(targetCritic, ...
                    {reshape(sampledNextObservation,[numObservations,1,miniBatchSize])});

                % Compute target for nonterminal states
                targetQValues(~logical(sampledIsdone)) = sampledReward(~logical(sampledIsdone)) + ...
                    discountFactor.*targetQValues(~logical(sampledIsdone));
                % Compute target for terminal states
                targetQValues(logical(sampledIsdone)) = sampledReward(logical(sampledIsdone));

                lossData.batchSize = miniBatchSize;
                lossData.actInfo = actInfo;
                lossData.actionBatch = sampledAction;
                lossData.targetQValues = targetQValues;

               %-----------------------------------------------------
               % 6. Compute gradients.
               %-----------------------------------------------------
                criticGradient = gradient(critic,@criticLossFunction, ...
                    {reshape(sampledObservation,[numObservations,1,miniBatchSize])},lossData);

                %----------------------------------------------------
                % 7. Update the critic network using gradients.
                %----------------------------------------------------
                critic = optimize(critic,criticGradient);
            end
        end
        % Update target critic periodically
        if mod(totalStepCt, targetUpdateFrequency)==0
            targetCritic = critic;
        end

        % Stop if a terminal condition is reached.
        if isDone
            break;
        end
    end % End of episode

    %----------------------------------------------------------------
    % 8. Update the training visualization.
    %----------------------------------------------------------------
    episodeCumulativeReward = sum(episodeReward);
    episodeCumulativeRewardVector = cat(2,...
        episodeCumulativeRewardVector,episodeCumulativeReward);
    movingAveReward = movmean(episodeCumulativeRewardVector,...
        aveWindowSize,2);
    addpoints(lineReward,episodeCt,episodeCumulativeReward);
    addpoints(lineAveReward,episodeCt,movingAveReward(end));
    title(ax, "Training Progress - Episode: " + episodeCt + ...
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        ", Total Step: " + string(totalStepCt) + ...
        ", epsilon:" + string(epsilon))
    drawnow;

    errorPreddiction = errorPreddiction(1:stepCt);

    % Display one step prediction error.
    addpoints(lineLossTest1,episodeCt,mean(errorPreddiction))
    legend(axModelTest,'Model1');
    title(axModelTest, ...
        "Model one-step prediction error - Episode: " + episodeCt + ...
        ", Error: " + string(mean(errorPreddiction)))
    drawnow

    % Display training progress every 10th episode
    if (mod(episodeCt,10) == 0)    
        fprintf("EP:%d, Reward:%.4f, AveReward:%.4f, Steps:%d, TotalSteps:%d, epsilon:%f, error model:%f\n",...
            episodeCt,episodeCumulativeReward,movingAveReward(end),...
            stepCt,totalStepCt,epsilon,mean(errorPreddiction))
    end

    %-----------------------------------------------------------------------------
    % 9. Terminate training if the network is sufficiently trained.
    %-----------------------------------------------------------------------------
    if max(movingAveReward) > trainingTerminationValue
        break
    end
end

EP:10, Reward:12.0000, AveReward:13.3333, Steps:18, TotalSteps:261, epsilon:1.000000, error model:3.786379
EP:20, Reward:11.0000, AveReward:20.1667, Steps:17, TotalSteps:493, epsilon:1.000000, error model:3.768267
EP:30, Reward:34.0000, AveReward:19.3333, Steps:40, TotalSteps:769, epsilon:1.000000, error model:3.763075
EP:40, Reward:20.0000, AveReward:13.8333, Steps:26, TotalSteps:960, epsilon:1.000000, error model:3.797021
EP:50, Reward:13.0000, AveReward:22.5000, Steps:19, TotalSteps:1192, epsilon:1.000000, error model:3.813097
EP:60, Reward:32.0000, AveReward:14.8333, Steps:38, TotalSteps:1399, epsilon:1.000000, error model:3.821042
EP:70, Reward:12.0000, AveReward:17.6667, Steps:18, TotalSteps:1630, epsilon:1.000000, error model:3.741603
EP:80, Reward:17.0000, AveReward:16.5000, Steps:23, TotalSteps:1873, epsilon:1.000000, error model:3.780144
EP:90, Reward:13.0000, AveReward:11.8333, Steps:19, TotalSteps:2113, epsilon:0.567555, error model:0.222689
EP:100, Reward:198.0000, AveReward:223.5000, Steps:204, TotalSteps:3631, epsilon:0.010000, error model:0.283726
EP:110, Reward:381.0000, AveReward:262.5000, Steps:387, TotalSteps:6600, epsilon:0.010000, error model:0.117766
EP:120, Reward:79.0000, AveReward:229.5000, Steps:85, TotalSteps:8887, epsilon:0.010000, error model:0.081134
EP:130, Reward:234.0000, AveReward:300.5000, Steps:240, TotalSteps:11798, epsilon:0.010000, error model:0.063376
EP:140, Reward:500.0000, AveReward:403.5000, Steps:500, TotalSteps:15562, epsilon:0.010000, error model:0.036053
EP:150, Reward:500.0000, AveReward:443.6667, Steps:500, TotalSteps:19598, epsilon:0.010000, error model:0.032433
EP:160, Reward:349.0000, AveReward:264.0000, Steps:355, TotalSteps:21980, epsilon:0.010000, error model:0.037416
EP:170, Reward:231.0000, AveReward:231.8333, Steps:237, TotalSteps:24324, epsilon:0.010000, error model:0.029361
EP:180, Reward:311.0000, AveReward:416.6667, Steps:317, TotalSteps:28417, epsilon:0.010000, error model:0.026569
EP:190, Reward:500.0000, AveReward:468.6667, Steps:500, TotalSteps:33092, epsilon:0.010000, error model:0.014980
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Simulate Agent

To simulate the trained agent, first reset the environment.

obs0 = reset(env);
obs = obs0;

Enable the environment visualization, which is updated each time the environment step function is
called.

plot(env)

For each simulation step, perform the following actions.

1 Get the action by sampling from the policy using the getAction function.
2 Step the environment using the obtained action value.
3 Terminate if a terminal condition is reached.

actionVector = zeros(1,maxStepsPerEpisode);
obsVector = zeros(numObservations,maxStepsPerEpisode+1);
obsVector(:,1) = obs0;
for stepCt = 1:maxStepsPerEpisode
    
    % Select action according to trained policy.
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    action = getAction(critic,{obs});
        
    % Step the environment.
    [nextObs,reward,isDone] = step(env,action);    

    obsVector(:,stepCt+1) = nextObs;
    actionVector(1,stepCt) = action;

    % Check for terminal condition.
    if isDone
        break
    end
    
    obs = nextObs;    
end

lastStepCt = stepCt;

Test Model

Test one of the models by predicting a next observation given a current observation and an action.

modelID = 3;
predictedObsVector = zeros(numObservations,lastStepCt);
obs = dlarray(obsVector(:,1),'CB');
predictedObsVector(:,1) = obs;
for stepCt = 1:lastStepCt
    obs = dlarray(obsVector(:,stepCt),'CB');
    action = dlarray(actionVector(1,stepCt),'CB');
    
    dx = predict(transitionNetworkVector(modelID),obs, action);
    predictedObs = obs + dx;
    predictedObsVector(:,stepCt+1) = predictedObs;    
end
predictedObsVector = predictedObsVector(:, 1:lastStepCt);
figure(5)
layOut = tiledlayout(4,1, 'TileSpacing', 'compact');
for i = 1:4
    nexttile;
    errorPrediction = abs(predictedObsVector(i,1:lastStepCt) - obsVector(i,1:lastStepCt));
    line1 = plot(errorPrediction,'DisplayName', 'Absolute Error');
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    title("observation "+num2str(i));
end
title(layOut,"Prediction Absolute Error")

The small absolute prediction error shows that the model is successfully trained to predict the next
observation.
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Deploy Trained Reinforcement Learning Policies
Once you train a reinforcement learning agent, you can generate code to deploy the optimal policy.
You can generate:

• CUDA code for deep neural network policies using GPU Coder
• C/C++ code for table, deep neural network, or linear basis function policies using MATLAB Coder

Code generation is supported for agents using feedforward neural networks in any of the input paths,
provided that all the used layers are supported. Code generation is not supported for continuous
actions PG, AC, PPO, and SAC agents using a recurrent neural network (RNN).

For more information on training reinforcement learning agents, see “Train Reinforcement Learning
Agents” on page 5-3.

To create a policy evaluation function that selects an action based on a given observation, use the
generatePolicyFunction command. This command generates a MATLAB script, which contains
the policy evaluation function, and a MAT-file, which contains the optimal policy data.

You can generate code to deploy this policy function using GPU Coder or MATLAB Coder.

Generate Code Using GPU Coder
If your trained optimal policy uses a deep neural network, you can generate CUDA code for the policy
using GPU Coder. For more information on supported GPUs see “GPU Support by Release” (Parallel
Computing Toolbox). There are several required and recommended prerequisite products for
generating CUDA code for deep neural networks. For more information, see “Installing Prerequisite
Products” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Not all deep neural network layers support GPU code generation. For a list of supported layers, see
“Supported Networks, Layers, and Classes” (GPU Coder). For more information and examples on
GPU code generation, see “Deep Learning with GPU Coder” (GPU Coder).

Generate CUDA Code for Deep Neural Network Policy

As an example, generate GPU code for the policy gradient agent trained in “Train PG Agent to
Balance Cart-Pole System” on page 5-30.

Load the trained agent.

load('MATLABCartpolePG.mat','agent')

Create a policy evaluation function for this agent.

generatePolicyFunction(agent)

This command creates the evaluatePolicy.m file, which contains the policy function, and the
agentData.mat file, which contains the trained deep neural network actor. For a given observation,
the policy function evaluates a probability for each potential action using the actor network. Then,
the policy function randomly selects an action based on these probabilities.

You can generate code for this network using GPU Coder. For example, you can generate a CUDA
compatible MEX function.
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Configure the codegen function to create a CUDA compatible C++ MEX function.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

Set an example input value for the policy evaluation function. To find the observation dimension, use
the getObservationInfo function. In this case, the observations are in a four-element vector.

argstr = '{ones(4,1)}';

Generate code using the codegen function.

codegen('-config','cfg','evaluatePolicy','-args',argstr,'-report');

This command generates the MEX function evaluatePolicy_mex.

Generate Code Using MATLAB Coder
You can generate C/C++ code for table, deep neural network, or linear basis function policies using
MATLAB Coder.

Using MATLAB Coder, you can generate:

• C/C++ code for policies that use Q tables, value tables, or linear basis functions. For more
information on general C/C++ code generation, see “Generating Code” (MATLAB Coder).

• C++ code for policies that use deep neural networks. Note that code generation is not supported
for continuous actions PG, AC, PPO, and SAC agents using a recurrent neural network (RNN). For
a list of supported layers, see “Networks and Layers Supported for Code Generation” (MATLAB
Coder). For more information, see “Prerequisites for Deep Learning with MATLAB Coder”
(MATLAB Coder) and “Deep Learning with MATLAB Coder” (MATLAB Coder).

Generate C Code for Deep Neural Network Policy without using any Third-Party Library

As an example, generate C code without dependencies on third-party libraries for the policy gradient
agent trained in “Train PG Agent to Balance Cart-Pole System” on page 5-30.

Load the trained agent.

load('MATLABCartpolePG.mat','agent')

Create a policy evaluation function for this agent.

generatePolicyFunction(agent)

This command creates the evaluatePolicy.m file, which contains the policy function, and the
agentData.mat file, which contains the trained deep neural network actor. For a given observation,
the policy function evaluates a probability for each potential action using the actor network. Then,
the policy function randomly selects an action based on these probabilities.

Configure the codegen function to generate code suitable for building a MEX file.

cfg = coder.config('mex');

On the configuration object, set the target language to C++, and set DeepLearningConfig to
'none'. This option generates code without using any third-party library.
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cfg.TargetLang = 'C';
cfg.DeepLearningConfig = coder.DeepLearningConfig('none'); 

Set an example input value for the policy evaluation function. To find the observation dimension, use
the getObservationInfo function. In this case, the observations are in a four-element vector.

argstr = '{ones(4,1)}';

Generate code using the codegen function.

codegen('-config','cfg','evaluatePolicy','-args',argstr,'-report');

This command generates the C++ code for the policy gradient agent containing the deep neural
network actor.

Generate C++ Code for Deep Neural Network Policy using Third-Party Libraries

As an example, generate C++ code for the policy gradient agent trained in “Train PG Agent to
Balance Cart-Pole System” on page 5-30 using the Intel Math Kernel Library for Deep Neural
Networks (MKL-DNN).

Load the trained agent.

load('MATLABCartpolePG.mat','agent')

Create a policy evaluation function for this agent.

generatePolicyFunction(agent)

This command creates the evaluatePolicy.m file, which contains the policy function, and the
agentData.mat file, which contains the trained deep neural network actor. For a given observation,
the policy function evaluates a probability for each potential action using the actor network. Then,
the policy function randomly selects an action based on these probabilities.

Configure the codegen function to generate code suitable for building a MEX file.

cfg = coder.config('mex');

On the configuration object, set the target language to C++, and set DeepLearningConfig to the
target library 'mkldnn'. This option generates code using the Intel Math Kernel Library for Deep
Neural Networks (Intel MKL-DNN).

cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn'); 

Set an example input value for the policy evaluation function. To find the observation dimension, use
the getObservationInfo function. In this case, the observations are in a four-element vector.

argstr = '{ones(4,1)}';

Generate code using the codegen function.

codegen('-config','cfg','evaluatePolicy','-args',argstr,'-report');
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This command generates the C++ code for the policy gradient agent containing the deep neural
network actor.

Generate C Code for Q Table Policy

As an example, generate C code for the Q-learning agent trained in “Train Reinforcement Learning
Agent in Basic Grid World” on page 1-14.

Load the trained agent.

load('basicGWQAgent.mat','qAgent')

Create a policy evaluation function for this agent.

generatePolicyFunction(qAgent)

This command creates the evaluatePolicy.m file, which contains the policy function, and the
agentData.mat file, which contains the trained Q table value function. For a given observation, the
policy function looks up the value function for each potential action using the Q table. Then, the
policy function selects the action for which the value function is greatest.

Set an example input value for the policy evaluation function. To find the observation dimension, use
the getObservationInfo function. In this case, there is a single one dimensional observation
(belonging to a discrete set of possible values).

argstr = '{[1]}';

Configure the codegen function to generate embeddable C code suitable for targeting a static
library, and set the output folder to buildFolder.

cfg = coder.config('lib');
outFolder = 'buildFolder';

Generate C code using the codegen function.

codegen('-c','-d',outFolder,'-config','cfg',...
    'evaluatePolicy','-args',argstr,'-report');

See Also
generatePolicyFunction

More About
• “Reinforcement Learning Agents” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-3
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